THE SET OF MINIMAL DISTANCES IN KRULL MONOIDS

ALFRED GEROLDINGER AND QINGHAI ZHONG

Abstract

Let H be a Krull monoid with finite class group G. Then every non-unit $a \in H$ can be written as a finite product of atoms, say $a=u_{1} \cdot \ldots \cdot u_{k}$. The set $\mathrm{L}(a)$ of all possible factorization lengths k is called the set of lengths of a. If G is finite, then there is a constant $M \in \mathbb{N}$ such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference $d \in \Delta^{*}(H)$, where $\Delta^{*}(H)$ denotes the set of minimal distances of H. We show that max $\Delta^{*}(H) \leq \max \{\exp (G)-2, r(G)-1\}$ and that equality holds if every class of G contains a prime divisor, which holds true for holomorphy rings in global fields.

1. Introduction

Let H be a Krull monoid with class group G (we have in mind holomorphy rings in global fields and give more examples later). Then every non-unit of H has a factorization as a finite product of atoms (or irreducible elements), and all these factorizations are unique (i.e., H is factorial) if and only if G is trivial. Otherwise, there are elements having factorizations which differ not only up to associates and up to the order of the factors. These phenomena are described by arithmetical invariants such as sets of lengths and sets of distances. We first recall some concepts and then we formulate a main result of the present paper.

For a finite nonempty set $L=\left\{m_{1}, \ldots, m_{k}\right\}$ of positive integers with $m_{1}<\ldots<m_{k}$, we denote by $\Delta(L)=\left\{m_{i}-m_{i-1} \mid i \in[2, k]\right\}$ the set of distances of L. Thus $\Delta(L)=\emptyset$ if and only if $|L| \leq 1$. If a non-unit $a \in H$ has a factorization $a=u_{1} \cdot \ldots \cdot u_{k}$ into atoms u_{1}, \ldots, u_{k}, then k is called the length of the factorization, and the set $\mathrm{L}_{H}(a)=\mathrm{L}(a)$ of all possible k is called the set of lengths of a. If there is an element $a \in H$ with $|\mathrm{L}(a)|>1$, then it immediately follows that $\left|\mathrm{L}\left(a^{n}\right)\right|>n$ for every $n \in \mathbb{N}$. Since H is Krull, every non-unit has a factorization into atoms and all sets of lengths are finite. The set of distances $\Delta(H)$ is the union of all sets $\Delta(\mathrm{L}(a))$ over all non-units $a \in H$. Thus, by definition, $\Delta(H)=\emptyset$ if and only if $|\mathrm{L}(a)|=1$ for all non-units $a \in H$, and $\Delta(H)=\{d\}$ if and only if $\mathrm{L}(a)$ is an arithmetical progression with difference d for all non-units $a \in H$. The set of minimal distances $\Delta^{*}(H)$ is defined as

$$
\Delta^{*}(H)=\{\min \Delta(S) \mid S \subset H \text { is a divisor-closed submonoid with } \Delta(S) \neq \emptyset\}
$$

By definition, we have $\Delta^{*}(H) \subset \Delta(H)$, and $\Delta^{*}(H)=\emptyset$ if and only if $\Delta(H)=\emptyset$. If the class group G is finite, then $\Delta(H)$ is finite and sets of lengths have a well-defined structure which is given in the next theorem (13, Chapter 4.7]).
Theorem A. Let H be a Krull monoid with finite class group. Then there is a constant $M \in \mathbb{N}$ such that the set of lengths $\mathrm{L}(a)$ of any non-unit $a \in H$ is an AAMP (almost arithmetical multiprogression) with difference $d \in \Delta^{*}(H)$ and bound M.

The structural description given above is best possible (32). The set of minimal distances $\Delta^{*}(H)$ has been studied by Chapman, Geroldinger, Halter-Koch, Hamidoune, Plagne, Smith, Schmid, and others and there are a variety of results. We refer the reader to the monograph [13, Chapter 6.8] for an overview and mention some results which have appeared since then. Suppose that G is finite and that every class

[^0]contains a prime divisor. Then the set of distances $\Delta(H)$ is an interval (18]). A simple example shows that the interval $[1, \mathrm{r}(G)-1]$ is contained in $\Delta^{*}(H)$ (Lemma 3.1) and thus, by Theorem 1.1 below, $\Delta^{*}(H)$ is an interval too if $r(G) \geq \exp (G)-1$. Cyclic groups are in sharp contrast to this. Indeed, if G is cyclic with $|G|>3$, then $\max \left(\Delta^{*}(H) \backslash\{|G|-2\}\right)=\left\lfloor\frac{|G|}{2}\right\rfloor-1$ (14$\left.]\right)$. A detailed study of the structure of $\Delta^{*}(H)$ in case of cyclic groups is given in a recent paper by Plagne and Schmid [23].

The goal of the present paper is to study the maximum of $\Delta^{*}(H)$, and here is the main direct result.
Theorem 1.1. Let H be a Krull monoid with class group G.

1. If $|G| \leq 2$, then $\Delta^{*}(H)=\emptyset$.
2. If $2<|G|<\infty$, then $\max \Delta^{*}(H) \leq \max \{\exp (G)-2, \mathrm{r}(G)-1\}$ where $\mathrm{r}(G)$ denotes the rank of G.
3. Suppose that every class contains a prime divisor. If G is infinite, then $\Delta^{*}(H)=\mathbb{N}$. If $2<|G|<\infty$, then $\max \Delta^{*}(H)=\max \{\exp (G)-2, r(G)-1\}$.

Theorem 1.1 will be complemented by an associated inverse result (Theorem 4.5) describing how $\max \Delta^{*}(H)$ is realized and disproving a former conjecture (Remark 4.6). Both the direct as well as the inverse result have number theoretic relevance beyond the occurrence in Theorem A. Indeed, they are key tools in the characterization of those Krull monoids whose systems of sets of lengths are closed under set addition (17), in the study of arithmetical characterizations of class groups via sets of lengths (13, Chapter 7.3], 31, 16), as well as in the asymptotic study of counting functions associated to periods of sets of lengths (30 and [13, Theorem 9.4.10]).

In Section 2 we gather the required background from the theory of Krull monoids and from Additive Combinatorics. In particular, we outline that the set of minimal distances of H equals the set of minimal distances of an associated monoid of zero-sum sequences (Lemma 2.1) and that therefore it can be studied with methods from Additive Combinatorics. The proof of Theorem 1.1 will be given in Section 3 and the associated inverse result will be given in Section 4

2. Background on Krull monoids and on Additive Combinatorics

We denote by \mathbb{N} the set of positive integers, and, for $a, b \in \mathbb{Z}$, we denote by $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$ the discrete, finite interval between a and b. We use the convention that max $\emptyset=0$. By a monoid, we mean a commutative semigroup with identity that satisfies the cancellation laws. If H is a monoid, then H^{\times}denotes the unit group, $\mathrm{q}(H)$ the quotient group, and $\mathcal{A}(H)$ the set of atoms (or irreducible elements) of H. A submonoid $S \subset H$ is called divisor-closed if $a \in S, b \in H$, and b divides a imply that $b \in S$. A monoid H is said to be

- atomic if every non-unit can be written as a finite product of atoms.
- factorial if it is atomic and every atom is prime.
- half-factorial if it is atomic and $|\mathrm{L}(a)|=1$ for each non-unit $a \in H$ (equivalently, $\Delta(H)=\emptyset$).
- decomposable if there exist submonoids H_{1}, H_{2} with $H_{i} \not \subset H^{\times}$for $i \in[1,2]$ such that $H=H_{1} \times H_{2}$ (and H is called indecomposable else).
A monoid F is factorial with $F^{\times}=\{1\}$ if and only if it is free abelian. If this holds, then the set of primes $P \subset F$ is a basis of F, we write $F=\mathcal{F}(P)$, and every $a \in F$ has a representation of the form

$$
a=\prod_{p \in P} p^{v_{p}(a)} \quad \text { with } \mathrm{v}_{p}(a) \in \mathbb{N}_{0} \quad \text { and } \quad \mathrm{v}_{p}(a)=0 \text { for almost all } p \in P .
$$

A monoid homomorphism $\theta: H \rightarrow B$ is called a transfer homomorphism if it has the following properties:
(T 1) $B=\theta(H) B^{\times}$and $\theta^{-1}\left(B^{\times}\right)=H^{\times}$.
(T 2) If $u \in H, b, c \in B$ and $\theta(u)=b c$, then there exist $v, w \in H$ such that $u=v w, \theta(v) \simeq b$ and $\theta(w) \simeq c$.

If H and B are atomic monoids and $\theta: H \rightarrow B$ is a transfer homomorphism, then (see [13, Chapter 3.2])

$$
\mathrm{L}_{H}(a)=\mathrm{L}_{B}(\theta(a)) \text { for all } a \in H, \quad \Delta(H)=\Delta(B), \quad \text { and } \quad \Delta^{*}(H)=\Delta^{*}(B)
$$

Krull monoids. A monoid H is said to be a Krull monoid if it satisfies the following two conditions:
(a) There exists a monoid homomorphism $\varphi: H \rightarrow F=\mathcal{F}(P)$ into a free abelian monoid F such that $a \mid b$ in H if and only if $\varphi(a) \mid \varphi(b)$ in F.
(b) For every $p \in P$, there exists a finite subset $E \subset H$ such that $p=\operatorname{gcd}(\varphi(E))$.

Let H be a Krull monoid and $\varphi: H \rightarrow \mathcal{F}(P)$ a homomorphism satisfying Properties (a) and (b). Then φ is called a divisor theory of $H, G=\mathrm{q}(F) / \mathrm{q}(\varphi(H))$ is the class group, and $G_{P}=\{[p]=p \mathrm{q}(\varphi(H))) \mid p \in$ $P\} \subset G$ the set of classes containing prime divisors. The class group will be written additively, and the tuple $\left(G, G_{P}\right)$ are uniquely determined by H. To provide some examples of Krull monoids, we recall that a domain is a Krull domain if and only if its multiplicative monoid of nonzero elements is a Krull monoid, and that a noetherian domain is Krull if and only if it is integrally closed. Rings of integers, holomorphy rings in algebraic function fields, and regular congruence monoids in these domains are Krull monoids with finite class group such that every class contains a prime divisor ([12, [13, Chapter 2.11]). For monoids of modules and monoid domains which are Krull we refer to [22, 4, 3, 1].

Next we introduce Krull monoids having a combinatorial flavor which are used to model arbitrary Krull monoids. Let G be an additively written abelian group and $G_{0} \subset G$ a subset. An element $S=$ $g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}\left(G_{0}\right)$ is called a sequence over $G_{0}, \sigma(S)=g_{1}+\ldots+g_{l}$ is called its sum, $|S|=l$ its length, and $\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S) \mid g \in \operatorname{supp}(S)\right\}$ the maximal multiplicity of S. The monoid

$$
\mathcal{B}\left(G_{0}\right)=\left\{S \in \mathcal{F}\left(G_{0}\right) \mid \sigma(S)=0\right\}
$$

is a Krull monoid, called the monoid of zero-sum sequences over G_{0}. Its significance for the study of general Krull monoids is summarized in the following lemma (see [13. Theorem 3.4.10 and Proposition 4.3.13]).

Lemma 2.1. Let H be a Krull monoid, $\varphi: H \rightarrow D=\mathcal{F}(P)$ a divisor theory with class group G and $G_{P} \subset G$ the set of classes containing prime divisors. Let $\widetilde{\boldsymbol{\beta}}: D \rightarrow \mathcal{F}\left(G_{P}\right)$ denote the unique homomorphism defined by $\widetilde{\boldsymbol{\beta}}(p)=[p]$ for all $p \in P$. Then the homomorphism $\boldsymbol{\beta}=\widetilde{\boldsymbol{\beta}} \circ \varphi: H \rightarrow \mathcal{B}\left(G_{P}\right)$ is a transfer homomorphism. In particular, we have

$$
\Delta^{*}(H)=\Delta^{*}\left(\mathcal{B}\left(G_{P}\right)\right)=\left\{\min \Delta\left(\mathcal{B}\left(G_{0}\right)\right) \mid G_{0} \subset G_{P} \text { is a subset such that } \mathcal{B}\left(G_{0}\right) \text { is not half-factorial }\right\} .
$$

Thus $\Delta^{*}(H)$ can be studied in an associated monoid of zero-sum sequences and can thus be tackled by methods from Additive Combinatorics. Such transfer results to monoids of zero-sum sequences are not restricted to Krull monoids, but they do exist also from certain seminormal weakly Krull monoids and from certain maximal orders in central simple algebras over global fields. We do not outline this here but refer to [33, Theorem 1.1], [15, and [2, Section 7].
Zero-Sum Theory is a vivid subfield of Additive Combinatorics (see the monograph [20, the survey [10], and for a sample of recent papers on direct and inverse zero-sum problems with a strong number theoretical flavor see [19, 8, 21, 34, 9]). We gather together the concepts needed in the sequel.

Let G be a finite abelian group and $G_{0} \subset G$ a subset. Then $\left\langle G_{0}\right\rangle \subset G$ denotes the subgroup generated by G_{0}. A family $\left(e_{i}\right)_{i \in I}$ of elements of G is said to be independent if $e_{i} \neq 0$ for all $i \in I$ and, for every family $\left(m_{i}\right)_{i \in I} \in \mathbb{Z}^{(I)}$,

$$
\sum_{i \in I} m_{i} e_{i}=0 \quad \text { implies } \quad m_{i} e_{i}=0 \quad \text { for all } \quad i \in I
$$

The family $\left(e_{i}\right)_{i \in I}$ is called a basis for G if $G=\bigoplus_{i \in I}\left\langle e_{i}\right\rangle$. The set G_{0} is said to be independent if the tuple $(g)_{g \in G_{0}}$ is independent. If for a prime $p \in \mathbb{P}, r_{p}(G)$ is the p-rank of G, then

$$
\mathrm{r}(G)=\max \left\{\mathrm{r}_{p}(G) \mid p \in \mathbb{P}\right\} \quad \text { is the } \operatorname{rank} \text { of } G \text { and } \mathrm{r}^{*}(G)=\sum_{p \in \mathbb{P}} \mathrm{r}_{p}(G) \text { is the total rank of } G .
$$

The monoid $\mathcal{B}\left(G_{0}\right)$ of zero-sum sequences over G_{0} is a finitely generated Krull monoid. It is traditional to set

$$
\mathcal{A}\left(G_{0}\right):=\mathcal{A}\left(\mathcal{B}\left(G_{0}\right)\right), \Delta\left(G_{0}\right):=\Delta\left(\mathcal{B}\left(G_{0}\right)\right), \text { and } \Delta^{*}\left(G_{0}\right):=\Delta^{*}\left(\mathcal{B}\left(G_{0}\right)\right)
$$

Clearly, the atoms of $\mathcal{B}\left(G_{0}\right)$ are precisely the minimal zero-sum sequences over G_{0}. The set $\mathcal{A}\left(G_{0}\right)$ is finite, and $\mathrm{D}\left(G_{0}\right)=\max \left\{|S| \mid S \in \mathcal{A}\left(G_{0}\right)\right\}$ is the Davenport constant of G_{0}. The set G_{0} is called

- half-factorial if the monoid $\mathcal{B}\left(G_{0}\right)$ is half-factorial (equivalently, $\Delta\left(G_{0}\right)=\emptyset$).
- non-half-factorial if the monoid $\mathcal{B}\left(G_{0}\right)$ is not half-factorial (equivalently, $\left.\Delta\left(G_{0}\right) \neq \emptyset\right)$.
- minimal non-half-factorial if $\Delta\left(G_{0}\right) \neq \emptyset$ but every proper subset is half-factorial.
- (in) decomposable if the monoid $\mathcal{B}\left(G_{0}\right)$ is (in)decomposable.
(Maximal) half-factorial and (minimal) non-half-factorial subsets have found a lot of attention in the literature (see [11, 28, 24, 25, 29, [5, 6]), and cross numbers are a crucial tool for their study. For a sequence $S=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}\left(G_{0}\right)$, we call

$$
\begin{aligned}
\mathrm{k}(S) & =\sum_{i=1}^{l} \frac{1}{\operatorname{ord}\left(g_{i}\right)} \in \mathbb{Q}_{\geq 0} \quad \text { the cross number of } S, \text { and } \\
\mathrm{K}\left(G_{0}\right) & =\max \left\{\mathrm{k}(S) \mid S \in \mathcal{A}\left(G_{0}\right)\right\} \quad \text { the cross number of } G_{0} .
\end{aligned}
$$

The following simple result ([13, Proposition 6.7.3]) will be used throughout the paper without further mention.

Lemma 2.2. Let G be a finite abelian group and $G_{0} \subset G$ a subset. Then the following statements are equivalent:
(a) G_{0} is half-factorial.
(b) $\mathrm{k}(U)=1$ for every $U \in \mathcal{A}\left(G_{0}\right)$.
(c) $\mathrm{L}(B)=\{\mathrm{k}(B)\}$ for every $B \in \mathcal{B}\left(G_{0}\right)$.

3. Direct results on $\Delta^{*}(H)$

We start with a basic well-known lemma (see [13, Chapter 6.8]).
Lemma 3.1. Let G be a finite abelian group with $|G|>2$.

1. If $g \in G$ with $\operatorname{ord}(g)>2$, then $\operatorname{ord}(g)-2 \in \Delta^{*}(G)$. In particular, $\exp (G)-2 \in \Delta^{*}(G)$.
2. If $\mathrm{r}(G) \geq 2$, then $[1, \mathrm{r}(G)-1] \subset \Delta^{*}(G)$.
3. Let $G_{0} \subset G$ a subset.
(a) If there exists a $U \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(U)<1$, then $\min \Delta\left(G_{0}\right) \leq \exp (G)-2$.
(b) If $\mathrm{k}(U) \geq 1$ for all $U \in \mathcal{A}\left(G_{0}\right)$, then $\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2$.

Proof. 1. Let $g \in G$ with $\operatorname{ord}(g)=n>2$ and set $G_{0}=\{g,-g\}$. Then $\mathcal{A}\left(G_{0}\right)=\left\{g^{n},(-g)^{n},((-g) g)\right\}$, $\Delta\left(G_{0}\right)=\{n-2\}$, and hence $\min \Delta\left(G_{0}\right)=n-2$.
2. Let $s \in[2, \mathrm{r}(G)]$. Then there is a prime $p \in \mathbb{P}$ such that C_{p}^{s} is isomorphic to a subgroup of G, and it suffices to show that $s-1 \in \Delta^{*}\left(C_{p}^{s}\right)$. Let $\left(e_{1}, \ldots, e_{s}\right)$ be a basis of C_{p}^{s} and set $e_{0}=e_{1}+\ldots+e_{s}$ and $G_{0}=\left\{e_{0}, \ldots, e_{s}\right\}$. Then a simple calculation (details can be found in [13, Proposition 6.8.1]) shows that $\Delta\left(G_{0}\right)=\{s-1\}$ and hence $\min \Delta\left(G_{0}\right)=s-1$.
3.(a) Let $U=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(U)<1$ and $n=\exp (G)$ (note that $\mathrm{k}(U)<1$ implies $U \neq 0$, $l \geq 2$ and $\left.\mathrm{k}(U)>\frac{1}{n}\right)$. Then $U_{i}=g_{i}^{\operatorname{ord}\left(g_{i}\right)} \in \mathcal{A}\left(G_{0}\right)$ for all $i \in[1, l]$, and

$$
U^{n}=\prod_{i=1}^{l} U_{i}^{n / \operatorname{ord}\left(g_{i}\right)}
$$

implies that $n \mathbf{k}(U)=\sum_{i=1}^{l} \frac{n}{\operatorname{ord}\left(g_{i}\right)} \in \mathrm{L}\left(U^{n}\right)$. Since $\mathrm{k}(U)<1$, we have $n \mathrm{k}(U) \in[2, n-1]$ and $\min \Delta\left(G_{0}\right) \leq$ $n-n \mathrm{k}(U) \in[1, n-2]$.
3.(b) The proof is similar to that of 3.(a), see [13, Lemma 6.8.6] for details.

Lemma [3.1] 3 motivates the following definitions (see [30, 31). A subset $G_{0} \subset G$ is called an LCN-set (large cross number set) if $\mathrm{k}(U) \geq 1$ for each $U \in \mathcal{A}\left(G_{0}\right)$ and

$$
\mathrm{m}(G)=\max \left\{\min \Delta\left(G_{0}\right) \mid G_{0} \subset G \text { is a non-half-factorial LCN-set }\right\} .
$$

Clearly, if G has a non-half-factorial LCN-set, then $|G| \geq 4$. The following result (due to Schmid (31) is crucial for our approach.

Proposition 3.2. Let G be a finite abelian group with $|G|>2$. Then

$$
\max \Delta^{*}(G)=\max \{\exp (G)-2, \mathrm{~m}(G)\} \text { and } \mathrm{m}(G) \leq \max \left\{\mathrm{r}^{*}(G)-1, \mathrm{~K}(G)-1\right\}
$$

If G is a p-group, then $\mathrm{m}(G)=\mathrm{r}(G)-1$ and thus $\max \Delta^{*}(G)=\max \{\exp (G)-2, \mathrm{r}(G)-1\}$.
Proof. See [31, Theorem 3.1, Lemma 3.3.(4), and Proposition 3.6].

Lemma 3.3. Let G be a finite abelian group and $G_{0} \subset G$ a subset.

1. The following statements are equivalent:
(a) G_{0} is decomposable.
(b) There are nonempty subsets $G_{1}, G_{2} \subset G_{0}$ such that $G_{0}=G_{1} \uplus G_{2}$ and $\mathcal{B}\left(G_{0}\right)=\mathcal{B}\left(G_{1}\right) \times \mathcal{B}\left(G_{2}\right)$.
(c) There are nonempty subsets $G_{1}, G_{2} \subset G_{0}$ such that $G_{0}=G_{1} \uplus G_{2}$ and $\mathcal{A}\left(G_{0}\right)=\mathcal{A}\left(G_{1}\right) \uplus \mathcal{A}\left(G_{2}\right)$.
(d) There are nonempty subsets $G_{1}, G_{2} \subset G_{0}$ such that $\left\langle G_{0}\right\rangle=\left\langle G_{1}\right\rangle \oplus\left\langle G_{2}\right\rangle$.
2. If G_{0} is minimal non-half-factorial, then G_{0} is indecomposable.

Proof. 1. See [26, Lemma 3.7] and [1, Lemma 3.2].
2. This follows immediately from 1.(b).

Lemma 3.4. Let G be a finite abelian group and $G_{0} \subset G$ a subset.

1. For each $g \in G_{0}$,

$$
\begin{aligned}
& \operatorname{gcd}\left(\left\{\mathrm{v}_{g}(B) \mid B \in \mathcal{B}\left(G_{0}\right)\right\}\right)=\operatorname{gcd}\left(\left\{\mathrm{v}_{g}(A) \mid A \in \mathcal{A}\left(G_{0}\right)\right\}\right) \\
= & \min \left(\left\{\mathrm{v}_{g}(A) \mid \mathrm{v}_{g}(A)>0, A \in \mathcal{A}\left(G_{0}\right)\right\}\right)=\min \left(\left\{\mathrm{v}_{g}(B) \mid \mathrm{v}_{g}(B)>0, B \in \mathcal{B}\left(G_{0}\right)\right\}\right) \\
= & \min \left(\left\{k \in \mathbb{N} \mid k g \in\left\langle G_{0} \backslash\{g\}\right\rangle\right\}\right)=\operatorname{gcd}\left(\left\{k \in \mathbb{N} \mid k g \in\left\langle G_{0} \backslash\{g\}\right\rangle\right\}\right) .
\end{aligned}
$$

In particular, $\min \left(\left\{k \in \mathbb{N} \mid k g \in\left\langle G_{0} \backslash\{g\}\right\rangle\right\}\right)$ divides ord (g).
2. Suppose that for any $h \in G_{0}$, we have that $h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$. Then for any atom A with $\operatorname{supp}(A) \subsetneq G_{0}$ and any $h \in \operatorname{supp}(A)$, we have $\operatorname{gcd}\left(\mathrm{v}_{h}(A)\right.$, $\left.\operatorname{ord}(h)\right)>1$.
3. If G_{0} is minimal non-half-factorial, then there exists a minimal non-half-factorial subset $G_{0}^{*} \subset G$ with $\left|G_{0}\right|=\left|G_{0}^{*}\right|$ and a transfer homomorphism $\theta: \mathcal{B}\left(G_{0}\right) \rightarrow \mathcal{B}\left(G_{0}^{*}\right)$ such that the following properties are satisfied:
(a) For each $g \in G_{0}^{*}$, we have $g \in\left\langle G_{0}^{*} \backslash\{g\}\right\rangle$.
(b) For each $B \in \mathcal{B}\left(G_{0}\right)$, we have $\mathrm{k}(B)=\mathrm{k}(\theta(B))$.
(c) If G_{0}^{*} has the property that for each $h \in G_{0}^{*}, h \notin\langle E\rangle$ for any $E \subsetneq G_{0}^{*} \backslash\{h\}$, then G_{0} also has the property.
(d) If G_{0}^{*} has the property that there exists $h \in G_{0}^{*}$, such that $G_{0}^{*} \backslash\{h\}$ is independent, then G_{0} also has the property.

Proof. 1. Let $g \in G_{0}$ and let $\gamma_{1}, \ldots, \gamma_{6}$ denote the six terms in the given order of the asserted equation. By definition, it follows that $\gamma_{1} \leq \gamma_{2} \leq \gamma_{3}$. Since $\left\{\mathrm{v}_{g}(B) \mid B \in \mathcal{B}\left(G_{0}\right)\right\}=\left\{k \in \mathbb{N} \mid k g \in\left\langle G_{0} \backslash\{g\}\right\rangle\right\}$, we have that $\gamma_{1}=\gamma_{6}$ and $\gamma_{4}=\gamma_{5}$. Therefore we only need to show $\gamma_{3} \leq \gamma_{4}$ and $\gamma_{4} \leq \gamma_{1}$.

To show that $\gamma_{3} \leq \gamma_{4}$, let $B \in \mathcal{B}\left(G_{0}\right)$ such that $\mathrm{v}_{g}(B)=\gamma_{4}$. Suppose that $B=A_{1} \cdot \ldots \cdot A_{s}$ with $s \in \mathbb{N}$ and $A_{1}, \ldots, A_{s} \in \mathcal{A}\left(G_{0}\right)$. Then $\mathrm{v}_{g}(B)=\mathrm{v}_{g}\left(A_{1}\right)+\ldots+\mathrm{v}_{g}\left(A_{s}\right)$. The minimality of $\mathrm{v}_{g}(B)$ implies that there is precisely one $i \in[1, s]$ with $\mathrm{v}_{g}\left(A_{i}\right)=\mathrm{v}_{g}(B)$ and $\mathrm{v}_{g}\left(A_{j}\right)=0$ for all $j \in[1, s] \backslash\{i\}$. Thus $\gamma_{3} \leq \mathrm{v}_{g}\left(A_{i}\right)=\mathrm{v}_{g}(B)=\gamma_{4}$.

Next we show that $\gamma_{4} \leq \gamma_{1}$. There are $s \in \mathbb{N}, r \in[1, s], U_{1}, \ldots, U_{s} \in \mathcal{B}\left(G_{0}\right)$, and $k_{1}, \ldots, k_{s} \in \mathbb{N}$ such that

$$
\begin{aligned}
\gamma_{1} & =k_{1} \mathrm{v}_{g}\left(U_{s}\right)+\ldots+k_{r} \mathrm{v}_{g}\left(U_{r}\right)-k_{r+1} \mathrm{v}_{g}\left(U_{r+1}\right)-\ldots-k_{s} \mathrm{v}_{g}\left(U_{s}\right) \\
& =\mathrm{v}_{g}\left(U_{1}^{k_{1}} \cdot \ldots \cdot U_{r}^{k_{r}}\right)-\mathrm{v}_{g}\left(U_{r+1}^{k_{r+1}} \cdot \ldots \cdot U_{s}^{k_{s}}\right)
\end{aligned}
$$

Setting $B_{1}=U_{1}^{k_{1}} \cdot \ldots \cdot U_{r}^{k_{r}}, B_{2}=U_{r+1}^{k_{r+1}} \cdot \ldots \cdot U_{s}^{k_{s}}$, and $B_{3}=\prod_{h \in G_{0} \backslash\{g\}} h^{\left|B_{2}\right|}$ we obtain that $B_{1} B_{2}^{-1} B_{3} \in$ $\mathcal{B}\left(G_{0}\right)$ and

$$
\gamma_{1}=\mathrm{v}_{g}\left(B_{1}\right)-\mathrm{v}_{g}\left(B_{2}\right)=\mathrm{v}_{g}\left(B_{1} B_{2}^{-1} B_{3}\right) \geq \gamma_{4}
$$

In particular, $\gamma_{5}=\gamma_{2}$ divides $\operatorname{ord}(g)$ because $g^{\operatorname{ord}(g)} \in \mathcal{A}\left(G_{0}\right)$.
2. Assume to the contrary that there are A and h as above such that $\operatorname{gcd}\left(v_{h}(A), \operatorname{ord}(h)\right)=1$. Choose $h^{\prime} \in G_{0} \backslash \operatorname{supp}(A)$, then $h \in\langle\operatorname{supp}(A) \backslash\{h\}\rangle \subset\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$, a contradiction.
3. By [13, Theorem 6.7.11], there are a subset $G_{0}^{*} \subset G$ satisfying Property (a) and a transfer homomorphism $\theta: \mathcal{B}\left(G_{0}\right) \rightarrow \mathcal{B}\left(G_{0}^{*}\right)$. Moreover, the transfer homomorphism θ is a composition of transfer homomorphisms θ^{\prime} of the following form:

- Let $g \in G_{0}, m=\min \left\{k \in \mathbb{N} \mid k g \in\left\langle G_{0} \backslash\{g\}\right\rangle\right\}, G_{0}^{\prime}=G_{0} \backslash\{g\} \cup\{m g\}$, and

$$
\theta^{\prime}: \mathcal{B}\left(G_{0}\right) \rightarrow \mathcal{B}\left(G_{0}^{\prime}\right), \quad \text { defined by } \quad \theta^{\prime}(B)=g^{-\mathrm{v}_{g}(B)}(m g)^{\mathrm{v}_{g}(B) / m} B
$$

It is outlined that $m \mid \mathrm{v}_{g}(B)$ and that $m \mid \operatorname{ord}(g)$.
Therefore it is sufficient to show that $\left|G_{0}\right|=\left|G_{0}^{\prime}\right|$ and that θ^{\prime} satisfies Properties (b) - (d).
(i) By definition, we have $\mathrm{k}(B)=\mathrm{k}\left(\theta^{\prime}(B)\right)$ for all $B \in \mathcal{B}\left(G_{0}\right)$.
(ii) Since G_{0} is a minimal non-half-factorial set, the same is true for G_{0}^{\prime} by [13, Lemma 6.8.9]. If $m g \in G_{0} \backslash\{g\}$, then $G_{0}^{\prime} \subsetneq G_{0}$ would be non-half-factorial, a contradiction to the minimality of G_{0}. It follows that $m g \notin G_{0} \backslash\{g\}$, which implies that $\left|G_{0}^{\prime}\right|=\left|G_{0}\right|$.
(iii) We set $G_{0}=\left\{g=g_{1}, \ldots, g_{k}\right\}$ (note that $k \geq 2$), $G_{0}^{\prime}=\left\{m g, g_{2}, \ldots, g_{k}\right\}$, and suppose that $h \notin\langle E\rangle$ for each $h \in G_{0}^{\prime}$ and for any $E \subsetneq G_{0}^{\prime} \backslash\{h\}$. Assume to the contrary that there exist $h \in G_{0}$ and $E \subsetneq G_{0} \backslash\{h\}$ such that $h \in\langle E\rangle$. If $h=g$, then $m g \in\langle E\rangle$, a contradiction.

Suppose that $h \neq g$, say $h=g_{k} \in\langle E\rangle$ with $E \subsetneq\left\{g, g_{2}, \ldots, g_{k-1}\right\}$. If $g \notin E$, then $E \subsetneq G_{0}^{\prime} \backslash\{m g\}$, a contradiction. Thus $g \in E$, and we set $E^{\prime}=E \backslash\{g\} \cup\{m g\}$. Since $h \in\langle E\rangle$, we have that $h=$ $\sum_{x \in E \backslash\{g\}} t_{x} x+t g$ where $t_{x}, t \in \mathbb{Z}$. Thus $t g=h-\sum_{x \in E \backslash\{g\}} t_{x} x \in\langle E \cup\{h\} \backslash\{g\}\rangle \subset\left\langle G_{0} \backslash\{g\}\right\rangle$. By 1., we obtain that $m \mid t$ and hence $h=\sum_{x \in E \backslash\{g\}} t_{x} x+\frac{t}{m} m g \in\left\langle E^{\prime}\right\rangle$, a contradiction.
(iv) We set $G_{0}=\left\{g=g_{1}, \ldots, g_{k}\right\}, G_{0}^{\prime}=\left\{m g, g_{2}, \ldots, g_{k}\right\}$, and suppose that there exists $h \in G_{0}^{\prime}$ such that $G_{0}^{\prime} \backslash\{h\}$ is independent. If $h=m g$, then $G_{0} \backslash\{g\}=G_{0}^{\prime} \backslash\{h\}$ is independent. Suppose that $h \neq m g$, say $h=$ g_{k}. Then $\left\{m g, g_{2}, \ldots, g_{k-1}\right\}$ is independent and assume to the contrary that $G_{0} \backslash\{h\}=\left\{g, g_{2}, \ldots, g_{k-1}\right\}$ is not independent. Then there exist $t_{1}, \ldots, t_{k-1} \in \mathbb{Z}$ such that $t_{1} g+t_{2} g_{2}+\ldots+t_{k-1} g_{k-1}=0$ but $t_{i} g_{i} \neq 0$ for at least one $i \in[1, k-1]$. This implies that $t_{1} g \in\left\langle g_{2}, \ldots, g_{k-1}\right\rangle \subset\left\langle G_{0} \backslash\{g\}\right\rangle$. By 1., we obtain that $m \mid t_{1}$ and hence $\frac{t_{1}}{m} m g+t_{2} g_{2}+\ldots+t_{k-1} g_{k-1}=0$, a contradiction to $\left\{m g, g_{2}, \ldots, g_{k-1}\right\}$ is independent.

Lemma 3.5. Let G be a finite abelian group and $G_{0} \subset G$ a subset with $\left|G_{0}\right| \geq r(G)+2$ such that the following two properties are satisfied:
(a) For any $h \in G_{0}, G_{0} \backslash\{h\}$ is half-factorial and $h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$.
(b) There exists an element $g \in G_{0}$ such that $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$ and $\operatorname{ord}(g)$ is not a prime power.

Then $\left|G_{0}\right| \leq \exp (G)-2$.
Proof. We set $\exp (G)=n=p_{1}^{k_{1}} \cdot \ldots \cdot p_{t}^{k_{t}}$, where $t \geq 2, k_{1}, \ldots, k_{t} \in \mathbb{N}$ and p_{1}, \ldots, p_{t} are distinct primes. By Lemma 3.4.2, we know that for any atom A with $\operatorname{supp}(A) \subsetneq G_{0}$ and any $h \in \operatorname{supp}(A)$, we have $\operatorname{gcd}\left(\mathrm{v}_{h}(A), \operatorname{ord}(h)\right)>1$. In particular,

$$
\begin{equation*}
\mathrm{v}_{h}(A) \geq 2 \quad \text { for each } h \in \operatorname{supp}(A) \tag{3.1}
\end{equation*}
$$

We continue with the following assertion.
A. For each $\nu \in[1, t]$ with $p_{\nu} \mid \operatorname{ord}(g)$, there is an atom $U_{\nu} \in \mathcal{A}\left(G_{0}\right)$ such that $\mathrm{v}_{g}\left(U_{\nu}\right) \left\lvert\, \frac{n}{p_{\nu}^{k_{\nu}}}\right., \mathrm{k}\left(U_{\nu}\right)=1$, and $\left|\operatorname{supp}\left(U_{\nu}\right) \backslash\{g\}\right| \leq \frac{n-\mathrm{v}_{g}\left(U_{\nu}\right)}{2}$.
Proof of A. Let $\nu \in[1, t]$ with $p_{\nu} \mid \operatorname{ord}(g)$. Since $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$ and $t \geq 2$, it follows that $0 \neq \frac{n}{p_{\nu \nu}^{k}} g \in$ $G_{\nu}=\left\langle\left.\frac{n}{p_{\nu}^{k_{\nu}}} h \right\rvert\, h \in G_{0} \backslash\{g\}\right\rangle$. Obviously, G_{ν} is a p_{ν}-group. Let $E_{\nu} \subset G_{0} \backslash\{g\}$ be minimal such that $\frac{n}{p_{\nu}^{k_{\nu}}} g \in\left\langle\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}\right\rangle$. The minimality of E_{ν} implies that $\left|E_{\nu}\right|=\left|\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}\right|$ and it implies that $\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}$ is a minimal generating set of $G_{\nu}^{\prime}:=\left\langle\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}\right\rangle$. Thus [13, Lemma A.6.2] implies that $\left|\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}\right| \leq \mathrm{r}^{*}\left(G_{\nu}^{\prime}\right)$. Putting all together we obtain that

$$
\left|E_{\nu}\right|=\left|\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}\right| \leq \mathrm{r}^{*}\left(G_{\nu}^{\prime}\right)=\mathrm{r}\left(G_{\nu}^{\prime}\right) \leq \mathrm{r}(G)
$$

Let $d_{\nu} \in \mathbb{N}$ be minimal such that $d_{\nu} g \in\left\langle E_{\nu}\right\rangle$. By Lemma 3.4.1, $d_{\nu} \left\lvert\, \frac{n}{p_{\nu}^{k_{\nu}}}\right.$ and there exists an atom U_{ν} such that $\mathrm{v}_{h}\left(U_{\nu}\right)=d_{\nu}$ and $\left|\operatorname{supp}\left(U_{\nu}\right)\right| \leq\left|E_{\nu}\right|+1 \leq \mathrm{r}(G)+1 \leq\left|G_{0}\right|-1$. Thus Property (a) implies that $\mathrm{k}\left(U_{\nu}\right)=1$. Let

$$
U_{\nu}=g^{\mathrm{v}_{g}\left(U_{\nu}\right)} \prod_{h \in \operatorname{supp}\left(U_{\nu}\right) \backslash\{g\}} h^{\mathrm{v}_{h}\left(U_{\nu}\right)} .
$$

Since $\mathrm{v}_{h}\left(U_{\nu}\right) \geq 2$ for each $h \in \operatorname{supp}\left(U_{\nu}\right) \backslash\{g\}$ by Equation (3.1), it follows that

$$
1=\mathrm{k}\left(U_{\nu}\right) \geq \frac{\mathrm{v}_{g}\left(U_{\nu}\right)}{n}+\left|\operatorname{supp}\left(U_{\nu}\right) \backslash\{g\}\right| \frac{2}{n},
$$

whence $\left|\operatorname{supp}\left(U_{\nu}\right) \backslash\{g\}\right| \leq \frac{n-\mathrm{v}_{g}\left(U_{\nu}\right)}{2}$.
Let $s \in \mathbb{N}$ be minimal such that there exists a nonempty subset $E \subsetneq G_{0} \backslash\{g\}$ with $s g \in\langle E\rangle$ and let $E \subsetneq G_{0} \backslash\{g\}$ be minimal such that $s g \in\langle E\rangle$. By Lemma 3.4.1, there is an atom V with $\mathrm{v}_{g}(V)=s$ and $\operatorname{supp}(V)=\{g\} \cup E \subsetneq G_{0}$. Then

$$
1=\mathrm{k}(V)=\frac{s}{\operatorname{ord}(g)}+\sum_{h \in E} \frac{\mathrm{v}_{h}(V)}{\operatorname{ord}(h)} .
$$

By Equation (3.1), we have that $\mathrm{v}_{h}(V) \geq 2$ for each $h \in E$ and hence the equation above implies that $|E| \leq \frac{n-s}{2}$.
CASE 1: s is a power of a prime, say a power of p_{1}.
Let $E_{1}=\operatorname{supp}\left(U_{1}\right) \backslash\{g\}$. Since $\mathrm{v}_{g}\left(U_{1}\right) \left\lvert\, \frac{n}{p_{1}^{k_{1}}}\right.$, we have that $g \in\left\langle s g, \mathrm{v}_{g}\left(U_{1}\right) g\right\rangle \subset\left\langle E \cup E_{1}\right\rangle$. Property (a) implies that $E \cup E_{1}=G_{0} \backslash\{g\}$, and thus

$$
\left|G_{0}\right| \leq 1+|E|+\left|E_{1}\right| \leq 1+\frac{n-s}{2}+\frac{n-\mathrm{v}_{g}\left(U_{1}\right)}{2}=1+n-\frac{\mathrm{v}_{g}\left(U_{1}\right)+s}{2} .
$$

Since $\operatorname{gcd}\left(\mathrm{v}_{g}\left(U_{1}\right), s\right)=1$, it follows that $\mathrm{v}_{g}\left(U_{1}\right)+s \geq 5$, hence $\left|G_{0}\right| \leq n-3 / 2$, and thus $\left|G_{0}\right| \leq n-2$.
CASE 2: s is not a prime power, say $p_{1} p_{2} \mid s$.
Then $s \geq 6$. Let $d=\operatorname{gcd}\left(s, \vee_{g}\left(U_{1}\right)\right)$ and $E_{1}=\operatorname{supp}\left(U_{1}\right) \backslash\{g\}$, then $d<s$ and $d g \in\left\langle s g, \mathrm{v}_{g}\left(U_{1}\right) g\right\rangle \subset$ $\left\langle E \cup E_{1}\right\rangle \subset\left\langle G_{0} \backslash\{g\}\right\rangle$. The minimality of s implies that $E \cup E_{1}=G_{0} \backslash\{g\}$, and thus

$$
\left|G_{0}\right| \leq 1+|E|+\left|E_{1}\right| \leq 1+\frac{n-s}{2}+\frac{n-\mathrm{v}_{g}\left(U_{1}\right)}{2}=1+n-\frac{\mathrm{v}_{g}\left(U_{1}\right)+s}{2} \leq n-3 .
$$

Lemma 3.6. Let G be a finite abelian group with $\exp (G)=n$. Let $G_{0} \subset G$ be a minimal non-half-factorial LCN-set and suppose that there is a subset $G_{2} \subset G_{0}$ such that $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$ and $\left|G_{2}\right| \leq\left|G_{0}\right|-2$. Then $\min \Delta\left(G_{0}\right) \leq \max \{1, n-4\}$.
Proof. Assume to the contrary that $\min \Delta\left(G_{0}\right) \geq \max \{2, n-3\}$. By [27, Corollary 3.1], the existence of the subset G_{2} implies that $\mathrm{k}(U) \in \mathbb{N}$ for each $U \in \mathcal{A}\left(G_{0}\right)$ and

$$
\min \Delta\left(G_{0}\right) \mid \operatorname{gcd}\left(\left\{\mathrm{k}(A)-1 \mid A \in \mathcal{A}\left(G_{0}\right)\right\}\right) .
$$

We set

$$
W_{1}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)=1\right\} \quad \text { and } \quad W_{2}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)>1\right\} .
$$

Then it follows that, for each $U_{1}, U_{2} \in W_{2}$,

$$
\begin{equation*}
\mathrm{k}\left(U_{1}\right) \geq \max \{3, n-2\} \quad \text { and } \quad\left(\text { either } \mathrm{k}\left(U_{1}\right)=\mathrm{k}\left(U_{2}\right) \text { or }\left|\mathrm{k}\left(U_{1}\right)-\mathrm{k}\left(U_{2}\right)\right| \geq \max \{2, n-3\}\right) \tag{3.2}
\end{equation*}
$$

We choose an element $U \in W_{2}$. Then $\operatorname{supp}(U)=G_{0}$, and we pick an element $g \in G_{0} \backslash G_{2}$. Then $g \in\left\langle G_{2}\right\rangle$ and, by Lemma 3.4. 1 , there is an atom A with $\mathrm{v}_{g}(A)=1$ and $\operatorname{supp}(A) \subset G_{2} \cup\{g\} \subsetneq G_{0}$. This implies that $A \in W_{1}$, and

$$
U A^{\operatorname{ord}(g)-\mathrm{v}_{g}(U)}=g^{\operatorname{ord}(g)} S
$$

for some zero-sum sequence S over G. Since $\operatorname{supp}(S)=G_{0} \backslash\{g\}$ and G_{0} is minimal non-half-factorial, S has a factorization into a product of atoms from W_{1}. Therefore, for each $U \in W_{2}$, there are $A_{1}, \ldots, A_{m} \in W_{1}$, where $m \leq \operatorname{ord}(g)-\mathrm{v}_{g}(U) \leq n-1$, such that $U A_{1} \cdot \ldots \cdot A_{m}$ can be factorized into a product of atoms from W_{1}.

We set

$$
W_{0}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)=\min \left\{\mathrm{k}(B) \mid B \in W_{2}\right\}\right\} \subset W_{2},
$$

and we consider all tuples $\left(U, A_{1}, \ldots, A_{m}\right)$, where $U \in W_{0}$ and $A_{1}, \ldots, A_{m} \in W_{1}$, such that $U A_{1} \cdot \ldots \cdot A_{m}$ can be factorized into a product of atoms from W_{1}. We fix one such tuple (U, A_{1}, \ldots, A_{m}) with the property that m is minimal possible. Note that $m \leq n-1$. Let

$$
\begin{equation*}
U A_{1} \cdot \ldots \cdot A_{m}=V_{1} \cdot \ldots \cdot V_{t} \quad \text { with } \quad t \in \mathbb{N} \quad \text { and } \quad V_{1}, \ldots, V_{t} \in W_{1} \tag{3.3}
\end{equation*}
$$

We observe that $\mathrm{k}(U)=t-m$ and continue with the following assertion.
A1. For each $\nu \in[1, t]$, we have $V_{\nu} \nmid U A_{1} \cdot \ldots \cdot A_{m-1}$.
Proof of A1. Assume to the contrary that there is such a $\nu \in[1, t]$, say $\nu=1$, with $V_{1} \mid U A_{1} \cdot \ldots \cdot A_{m-1}$. Then there are $l \in \mathbb{N}$ and $T_{1}, \ldots, T_{l} \in \mathcal{A}\left(G_{0}\right)$ such that

$$
U A_{1} \cdot \ldots \cdot A_{m-1}=V_{1} T_{1} \cdot \ldots \cdot T_{l}
$$

By the minimality of m, there exists some $\nu \in[1, l]$ such that $T_{\nu} \in W_{2}$, say $\nu=1$. Since

$$
\sum_{\nu=2}^{l} \mathrm{k}\left(T_{\nu}\right)=\mathrm{k}(U)+(m-1)-1-\mathrm{k}\left(T_{1}\right) \leq m-2 \leq n-3,
$$

and $\mathrm{k}\left(T^{\prime}\right) \geq n-2$ for all $T^{\prime} \in W_{2}$, it follows that $T_{2}, \ldots, T_{l} \in W_{1}$, whence $l=1+\sum_{\nu=2}^{l} \mathrm{k}\left(T_{\nu}\right) \leq m-1$. We obtain that

$$
V_{1} T_{1} \cdot \ldots \cdot T_{l} A_{m}=U A_{1} \cdot \ldots \cdot A_{m}=V_{1} \cdot \ldots \cdot V_{t}
$$

and thus

$$
T_{1} \cdot \ldots \cdot T_{l} A_{m}=V_{2} \cdot \ldots \cdot V_{t}
$$

The minimality of m implies that $\mathrm{k}\left(T_{1}\right)>\mathrm{k}(U)$. It follows that

$$
\mathrm{k}\left(T_{1}\right)-\mathrm{k}(U)=m-1-l \leq m-2 \leq n-3 \leq \max \{n-3,2\} \leq \mathrm{k}\left(T_{1}\right)-\mathrm{k}(U)
$$

Therefore $l=1, m=n-1, n \geq 5$ and $\mathrm{k}\left(T_{1}\right)=\mathrm{k}(U)+n-3$. Thus

$$
T_{1} A_{n-1}=V_{2} \cdot \ldots \cdot V_{t}, \quad \text { and hence } \quad t-1 \leq\left|A_{n-1}\right| .
$$

This equation shows that $\mathrm{k}\left(T_{1}\right)=t-2 \leq\left|A_{n-1}\right|-1 \leq n-1$, and hence $n-2 \leq \mathrm{k}(U)=\mathrm{k}\left(T_{1}\right)-n+3 \leq 2$, a contradiction to $n \geq 5$.
$\square($ Proof of A1)
Since $\exp (G)=n$ and $\mathrm{k}\left(A_{m}\right)=1$, it follows that $\left|A_{m}\right| \leq n$. By A1, for each $\nu \in[1, t]$ there exists an element $h_{\nu} \in \operatorname{supp}\left(A_{m}\right)$ such that

$$
\mathrm{v}_{h_{\nu}}\left(V_{\nu}\right)>\mathrm{v}_{h_{\nu}}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)
$$

For each $h \in \operatorname{supp}\left(A_{m}\right)$ we define

$$
F_{h}=\left\{\nu \in[1, t] \mid \mathrm{v}_{h}\left(V_{\nu}\right)>\mathrm{v}_{h}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)\right\} \subset[1, t] .
$$

Thus

$$
\bigcup_{h \in \operatorname{supp}\left(A_{m}\right)} F_{h}=[1, t]
$$

and for each $h \in \operatorname{supp}\left(A_{m}\right)$, we have

$$
\mathrm{v}_{h}\left(A_{m}\right)+\mathrm{v}_{h}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)=\sum_{i=1}^{t} \mathrm{v}_{h}\left(V_{i}\right) \geq \sum_{i \in F_{h}} \mathrm{v}_{h}\left(V_{i}\right) \geq\left|F_{h}\right|\left(\mathrm{v}_{h}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)+1\right) .
$$

Since $\left|A_{m}\right|>\left|\operatorname{supp}\left(A_{m}\right)\right|$ (otherwise, it would follow that $A_{m} \mid U$, a contradiction), we obtain that

$$
\begin{aligned}
t & =\left|\bigcup_{h \in \operatorname{supp}\left(A_{m}\right)} F_{h}\right| \leq \sum_{h}\left|F_{h}\right| \leq \sum_{h} \frac{\mathrm{v}_{h}\left(A_{m}\right)+\mathrm{v}_{h}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)}{\mathrm{v}_{h}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)+1} \\
& \leq \sum_{h} \frac{\mathrm{v}_{h}\left(A_{m}\right)+1}{2}=\frac{\left|A_{m}\right|}{2}+\frac{\left|\operatorname{supp}\left(A_{m}\right)\right|}{2}<\left|A_{m}\right| \leq n
\end{aligned}
$$

By Equations (3.3) and (3.2), we have $\max \{3, n-2\} \leq \mathrm{k}(U)=t-m \leq n-1-m$ and hence $m=1$, $n \geq 5, t=n-1$, and $\mathrm{k}(U)=n-2$. Therefore

$$
\begin{equation*}
U A_{1}=V_{1} \cdot \ldots \cdot V_{n-1}, \quad\left|A_{1}\right|=n, \quad n-2 \leq\left|\operatorname{supp}\left(A_{1}\right)\right| \leq n-1 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{h \in \operatorname{supp}\left(A_{1}\right)}\left|F_{h}\right|=n-1, \quad \text { and the sets } F_{h}, h \in \operatorname{supp}\left(A_{1}\right) \text { are pairwise disjoint. } \tag{3.5}
\end{equation*}
$$

Furthermore, $\left|F_{h}\right| \leq \frac{\mathrm{v}_{h}\left(A_{1}\right)+\mathrm{v}_{h}(U)}{\mathrm{v}_{h}(U)+1}$ for each $h \in \operatorname{supp}\left(A_{1}\right)$. Then for each $h \in \operatorname{supp}\left(A_{1}\right)$, we have that

$$
\begin{equation*}
\left|F_{h}\right| \leq 1 \quad \text { when } v_{h}\left(A_{1}\right) \leq 2 \quad \text { and } \quad\left|F_{h}\right| \leq 2 \quad \text { when } v_{h}\left(A_{1}\right) \leq 4 \tag{3.6}
\end{equation*}
$$

Now we consider all atoms $A_{1} \in W_{1}$ such that $U A_{1}$ can be factorized into a product of $n-1$ atoms from W_{1}, and among them the atoms A_{1}^{\prime} for which $\left|\operatorname{supp}\left(A_{1}^{\prime}\right)\right|$ is minimal, and among them we choose an atom $A_{1}^{\prime \prime}$ for which $\mathrm{h}\left(A_{1}^{\prime \prime}\right)$ is minimal. Changing notation if necessary we suppose that A_{1} has this property. By Equation (3.4), we distinguish three cases depending on $\left|\operatorname{supp}\left(A_{1}\right)\right|$ and $\mathrm{h}\left(A_{1}\right)$.
CASE 1: $\left|\operatorname{supp}\left(A_{1}\right)\right|=n-1$.
Let $\operatorname{supp}\left(A_{1}\right)=\left\{g_{1}, \ldots, g_{n-1}\right\}$ and $A_{1}=g_{1}^{2} g_{2} \cdot \ldots \cdot g_{n-1}$. Since $\mathrm{h}\left(A_{1}\right)=2$, Equations (3.6) and (3.5) imply that $\left|F_{h}\right|=1$ for each $h \in \operatorname{supp}\left(A_{1}\right)$. Note that $U g_{1}^{2} g_{2} \cdot \ldots \cdot g_{n-1}=V_{1} \cdot \ldots \cdot V_{n-1}$. After renumbering if necessary we may suppose that $F_{g_{i}}=\{i\}$ for each $i \in[1, n-1]$. Therefore, we have $\mathrm{v}_{g_{i}}\left(V_{i}\right)>\mathrm{v}_{g_{i}}(U) \geq 1$ for each $i \in[1, n-1]$. Hence $\mathrm{v}_{g_{1}}\left(V_{1}\right) \geq 2$ and we set $V_{1}=g_{1}^{2} Y_{1}$ for some Y_{1} dividing U. Thus $U Y_{1}^{-1} g_{2} \cdot \ldots \cdot g_{n-1}=V_{2} \cdot \ldots \cdot V_{n-1}$ which implies that $V_{i}=g_{i} Y_{i}$, for $i \in[2, n-1]$, where $Y_{2} \cdot \ldots \cdot Y_{n-1}=U Y_{1}^{-1}$. Summing up we have

$$
\begin{equation*}
U=Y_{1} \cdot \ldots \cdot Y_{n-1} \text { such that } V_{i}=g_{i} Y_{i} \text { for } i \in[2, n-1] \text { and } V_{1}=g_{1}^{2} Y_{1} \tag{3.7}
\end{equation*}
$$

If n is even and $X \in \mathcal{A}(G)$ such that $X \mid A_{1}^{n / 2}$, then $\mathrm{k}(X) \leq(n / 2) \mathrm{k}\left(A_{1}\right)=n / 2<n-2$ whence $X \in W_{1}$ and $\mathrm{k}(X)=1$. This shows that $\mathrm{L}\left(A_{1}^{n / 2}\right)=\{n / 2\}$. Similarly, if n is odd, then $\mathrm{L}\left(A_{1}^{(n+1) / 2}\right)=\{(n+1) / 2\}$. Therefore,

$$
A^{\prime}=\left\{\begin{aligned}
A_{1}^{\frac{n}{2}} & =g_{1}^{n} g_{2}^{\frac{n}{2}} \cdot \ldots \cdot g_{n-1}^{\frac{n}{2}} \quad \text { can only be written as a product of } n / 2 \text { atoms if } n \text { is even } \\
A_{1}^{\frac{n+1}{2}} & =g_{1}^{n} g_{1} g_{2}^{\frac{n+1}{2}} \cdot \ldots \cdot g_{n-1}^{\frac{n+1}{2}} \quad \text { can only be written as product of }(n+1) / 2 \text { atoms if } n \text { is odd }
\end{aligned}\right.
$$

Thus we can find an atom $C \mid A^{\prime}\left(g_{1}^{n}\right)^{-1}$ with $\operatorname{supp}(C) \subset\left\{g_{2}, \ldots, g_{n-1}\right\}$ and $|\operatorname{supp}(C)| \geq 2$, say $g_{2}, g_{3} \in$ $\operatorname{supp}(C)$. Therefore, we obtain that $V_{2} V_{3}=g_{2} g_{3} Y_{2} Y_{3} \mid U C$, say $U C=V_{2} V_{3} V^{\prime}$ for some $V^{\prime} \in \mathcal{B}(G)$. Since

$$
\mathrm{k}(U C)=\mathrm{k}(U)+\mathrm{k}(C)=n-1=\mathrm{k}\left(V_{2}\right)+\mathrm{k}\left(V_{3}\right)+\mathrm{k}\left(V^{\prime}\right),
$$

we obtain that $\mathrm{k}\left(V^{\prime}\right)=n-3$. Now Equation (3.2) implies that V^{\prime} is a product of atoms from W_{1}, and hence $U C$ can be factorized into a product of $n-1$ atoms. Since $|\operatorname{supp}(C)|<n-1=\left|\operatorname{supp}\left(A_{1}\right)\right|$, this is a contradiction to the choice of A_{1}.
CASE 2: $\left|\operatorname{supp}\left(A_{1}\right)\right|=n-2$ and $\mathrm{h}\left(A_{1}\right)=2$.
Let $\operatorname{supp}\left(A_{1}\right)=\left\{g_{1}, \ldots, g_{n-2}\right\}$ and $A_{1}=g_{1}^{2} g_{2}^{2} g_{3} \cdot \ldots \cdot g_{n-2}$. Since $\mathrm{h}\left(A_{1}\right)=2$, Equation (3.6) implies that $\left|F_{h}\right| \leq 1$ for each $h \in \operatorname{supp}\left(A_{1}\right)$. Thus $\sum_{h \in \operatorname{supp}\left(A_{1}\right)}\left|F_{h}\right| \leq n-2$, a contradiction to Equation (3.5).
CASE 3: $\left|\operatorname{supp}\left(A_{1}\right)\right|=n-2$ and $\mathrm{h}\left(A_{1}\right)=3$.
Let $\operatorname{supp}\left(A_{1}\right)=\left\{g_{1}, \ldots, g_{n-2}\right\}$ and $A_{1}=g_{1}^{3} g_{2} \cdot \ldots \cdot g_{n-2}$. Since $\mathrm{h}\left(A_{1}\right)=3$, the Equations (3.6) and (3.5) imply that $\left|F_{g_{1}}\right|=2$ and $\left|F_{g_{i}}\right|=1$ for each $i \in[2, n-2]$. Note that $U g_{1}^{3} g_{2} \cdot \ldots \cdot g_{n-2}=V_{1} \cdot \ldots \cdot V_{n-1}$. After renumbering if necessary we may suppose that $F_{g_{1}}=\{1, n-1\}$ and $F_{g_{i}}=\{i\}$ for each $i \in[2, n-2]$. Therefore we have $\mathrm{v}_{g_{i}}\left(V_{i}\right)>\mathrm{v}_{g_{i}}(U) \geq 1$ for each $i \in[1, n-2]$ and $\mathrm{v}_{g_{1}}\left(V_{n-1}\right)>\mathrm{v}_{g_{1}}(U) \geq 1$. Hence we may set $V_{n-1}=g_{1}^{2} Y_{n-1}$ for some Y_{n-1} dividing U. Thus $U Y_{n-1}^{-1} g_{1} g_{2} \cdot \ldots \cdot g_{n-2}=V_{1} \cdot \ldots \cdot V_{n-2}$ which implies that $V_{i}=g_{i} Y_{i}$ for each $i \in[1, n-2]$ where $Y_{1} \cdot \ldots \cdot Y_{n-2}=U Y_{n-1}^{-1}$. Summing up we have

$$
\begin{equation*}
U=Y_{1} \cdot \ldots \cdot Y_{n-1} \text { such that } V_{i}=g_{i} Y_{i} \text { for } i \in[1, n-2] \text { and } V_{n-1}=g_{1}^{2} Y_{n-1} \tag{3.8}
\end{equation*}
$$

As in CASE 1 we obtain that (note $n \geq 5$)
$A^{\prime}=\left\{\begin{array}{c}A_{1}^{\frac{n}{3}}=g_{1}^{n} g_{2}^{\frac{n}{3}} \cdot \ldots \cdot g_{n-2}^{\frac{n}{3}} \quad \text { can only be written as a product of } \frac{n}{3} \text { atoms if } n \equiv 0 \bmod 3 \\ A_{1}^{\frac{n+1}{3}}=g_{1}^{n} g_{1} g_{2}^{\frac{n+1}{3}} \cdot \ldots \cdot g_{n-2}^{\frac{n+1}{3}} \text { can only be written as a product of } \frac{n+1}{3} \text { atoms if } n \equiv 2 \bmod 3 \\ A_{1}^{\frac{n+2}{3}}=g_{1}^{n} g_{1}^{2} g_{2}^{\frac{n+2}{3}} \cdot \ldots \cdot g_{n-2}^{\frac{n+2}{3}} \text { can only be written as a product of } \frac{n+2}{3} \text { atoms if } n \equiv 1 \bmod 3 .\end{array}\right.$
Let $C \in \mathcal{A}(G)$ be an atom dividing $A^{\prime}\left(g_{1}^{n}\right)^{-1}$. Then $\operatorname{supp}(C) \subset\left\{g_{1}, \ldots, g_{n-2}\right\}$ and $|\operatorname{supp}(C)| \geq 2$, say $g_{i}, g_{j} \in \operatorname{supp}(C)$ where $1 \leq i<j \leq n-2$. Therefore, we obtain that $V_{i} V_{j}=g_{i} g_{j} Y_{i} Y_{j} \mid U C$ by Equation (3.8). Arguing as in CASE 1 we infer that $U C$ is a product of $n-1$ atoms from W_{1}. By the choice of A_{1}, we obtain that $|\operatorname{supp}(C)|=n-2$ and $\mathrm{h}(C) \geq 3$. Since this holds for all atoms dividing $A^{\prime}\left(g_{1}^{n}\right)^{-1}$, we obtain a contradiction to the structure of A^{\prime}.

Proof of Theorem 1.1. Let H be a Krull monoid with class group G and let $G_{P} \subset G$ denote the set of classes containing prime divisors. If $|G| \leq 2$, then H is half-factorial by [13, Corollary 3.4.12], and thus $\Delta^{*}(H) \subset \Delta(H)=\emptyset$. If G is infinite and $G_{P}=G$, then $\Delta^{*}(H)=\mathbb{N}$ by [7, Theorem 1.1].

Suppose that $2<|G|<\infty$. By Lemma [2.1, it suffices to prove the statements for the Krull monoid $\mathcal{B}\left(G_{P}\right)$. If G is finite, then $\Delta(G)$ is finite by [13, Corollary 3.4.13], hence $\Delta^{*}(G)$ is finite, and Lemma 3.1 shows that $\{\exp (G)-2, r(G)-1\} \subset \Delta^{*}(G)$.

Since $\Delta^{*}\left(G_{P}\right) \subset \Delta^{*}(G)$, it remains to prove that

$$
\max \Delta^{*}(G) \leq \max \{\exp (G)-2, \mathrm{r}(G)-1\}
$$

Let $G_{0} \subset G$ be a non-half-factorial subset, $n=\exp (G)$, and $r=\mathrm{r}(G)$. We need to prove that $\min \Delta\left(G_{0}\right) \leq \max \{n-2, r-1\}$. If $G_{1} \subset G_{0}$ is non-half-factorial, then $\min \Delta\left(G_{0}\right)=\operatorname{gcd} \Delta\left(G_{0}\right) \mid \operatorname{gcd} \Delta\left(G_{1}\right)=$ $\min \Delta\left(G_{1}\right)$. Thus we may suppose that G_{0} is minimal non-half-factorial. If there is an $U \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(U)<1$, then Lemma 3.13 implies that $\min \Delta\left(G_{0}\right) \leq n-2$. Suppose that $\mathrm{k}(U) \geq 1$ for all $U \in \mathcal{A}\left(G_{0}\right)$, i.e, G_{0} is an LCN-set. Since G_{0} is minimal non-half-factorial, it follows that G_{0} is indecomposable by Lemma 3.3. By Lemma 3.4 3, we may suppose that for each $g \in G_{0}$ we have $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$. Suppose that the order of each element of G_{0} is a prime power. Since G_{0} is indecomposable, Lemma 3.3 implies that each order is a power of a fixed prime $p \in \mathbb{P}$, and thus $\left\langle G_{0}\right\rangle$ is a p-group. By Proposition 3.2 we infer that

$$
\min \Delta\left(G_{0}\right) \leq \max \Delta^{*}\left(\left\langle G_{0}\right\rangle\right)=\max \left\{\exp \left(\left\langle G_{0}\right\rangle\right)-2, \mathrm{r}\left(\left\langle G_{0}\right\rangle\right)-1\right\} \leq \max \{n-2, r-1\}
$$

From now on we suppose that there is an element $g \in G_{0}$ whose order is not a prime power. Then $n \geq 6$. If $\left|G_{0}\right| \leq r+1$, then $\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2 \leq r-1$ by Lemma 3.1]3. Thus we may suppose that $\left|G_{0}\right| \geq r+2$ and we distinguish two cases.
CASE 1: There exists a subset $G_{2} \subset G_{0}$ such that $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$ and $\left|G_{2}\right| \leq\left|G_{0}\right|-2$.
Then Lemma 3.6 implies that $\min \Delta\left(G_{0}\right) \leq n-4 \leq n-2$.
CASE 2: Every subset $G_{1} \subset G_{0}$ with $\left|G_{1}\right|=\left|G_{0}\right|-1$ is a minimal generating set of $\left\langle G_{0}\right\rangle$.
Then for each $h \in G_{0}, G_{0} \backslash\{h\}$ is half-factorial and $h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$. Thus Lemma 3.5implies that $\left|G_{0}\right| \leq n-2$ and hence $\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2 \leq n-4 \leq n-2$ by Lemma 3.1].

4. Inverse results on $\Delta^{*}(H)$

Let G be a finite abelian group. In this section we study the structure of minimal non-half-factorial subsets $G_{0} \subset G$ with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$. These structural investigations were started by Schmid who obtained a characterization in case $\exp (G)-2>\mathrm{m}(G)$ (Lemma 4.1.1). Our main result in this section is Theorem 4.5 All examples of minimal non-half-factorial subsets $G_{0} \subset G$ with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$ known so far are simple, and the standing conjecture was that all such sets are simple. We provide the first example of such a set G_{0} which is not simple (Remark 4.6).

Lemma 4.1. Let G be a finite abelian group with $|G|>2$, $\exp (G)=n, r(G)=r$, and let $G_{0} \subset G$ be a subset with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$.

1. Suppose that $\mathrm{m}(G)<n-2$. Then G_{0} is indecomposable if and only $G_{0}=\{g,-g\}$ for some $g \in G$ with $\operatorname{ord}(g)=n$.
2. Suppose that $r \leq n-1$. Then G_{0} is minimal non-half-factorial but not an LCN-set if and only if $G_{0}=\{g,-g\}$ for some $g \in G$ with $\operatorname{ord}(g)=n$.
Proof. 1. See [30, Theorem 5.1].
3. Since $n=2$ implies $r=1$ and $|G|=2$, it follows that $n \geq 3$. By Theorem [1.1) we have that $\min \Delta\left(G_{0}\right)=n-2$. Obviously, the set $\{-g, g\}$, with $g \in G$ and $\operatorname{ord}(g)=n$, is a minimal non-half-factorial set with $\min \Delta(\{-g, g\})=n-2$ but not an LCN-set. Conversely, let G_{0} be minimal non-half-factorial but not an LCN-set. Then there exists an $A \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(A)<1$. Since $\left\{n, n \mathrm{k}\left(A^{n}\right)\right\} \subset \mathrm{L}\left(A^{n}\right)$, it follows that $n-2 \mid n(\mathrm{k}(A)-1)$ whence $\mathrm{k}(A)=\frac{2}{n}$. Consequently, $A=(-g) g$ for some g with $\operatorname{ord}(g)=n$. Thus $\{-g, g\} \subset G_{0}$, and since G_{0} is minimal non-half-factorial, equality follows.

Lemma 4.2. Let G be a finite abelian group with $\exp (G)=n, \mathrm{r}(G)=r$, and let $G_{0} \subset G$ be a minimal non-half-factorial LCN-set with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$.

1. Then $\left|G_{0}\right|=r+1, r \geq n-1$ and for each $h \in G_{0}, h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$.
2. If $r \leq n-2$, then $\mathrm{m}(G) \leq n-3$.
3. If $n \geq 5$ and $r \leq n-3$ then $\mathrm{m}(G) \leq n-4$.

Proof. 1. We have that $\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2$ by Lemma 3.13 and $\min \Delta\left(G_{0}\right)=\max \{n-2, r-1\}$ by Theorem 1.1

By Lemma 3.43 (Properties (a) and (c)), we may assume that for each $g \in G_{0}$ we have $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$. CASE 1: There is a subset $G_{2} \subset G_{0}$ such that $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$ and $\left|G_{2}\right| \leq\left|G_{0}\right|-2$.

The existence of G_{2} implies that G is neither isomorphic to C_{3} nor to $C_{2} \oplus C_{2}$ nor to $C_{3} \oplus C_{3}$ (this is immediately clear for the first two groups; to exclude the case $C_{3} \oplus C_{3}$, use again [27, Corollary 3.1] which says that $\mathrm{k}(U) \in \mathbb{N}$ for each $\left.U \in \mathcal{A}\left(G_{0}\right)\right)$. By Lemma 3.6. we know that min $\Delta\left(G_{0}\right) \leq \max \{n-4,1\}<$ $\max \{n-2, r-1\}=\min \Delta\left(G_{0}\right)$, a contradiction.
CASE 2: Every subset $G_{1} \subset G_{0}$ with $\left|G_{1}\right|=\left|G_{0}\right|-1$ is a minimal generating set of $\left\langle G_{0}\right\rangle$.
Then for each $h \in G_{0}, h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$.
If $\left|G_{0}\right| \geq r+2$, then by Lemma $3.5\left|G_{0}\right| \leq n-2$, it follows that $\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2 \leq n-4$, a contradiction.

If $\left|G_{0}\right| \leq r+1$, then $\max \{n-2, r-1\}=\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2 \leq r-1$, so we must have $\left|G_{0}\right|=r+1$ and $r \geq n-1$.
2. Assume to the contrary that $r \leq n-2$ and that $\mathrm{m}(G) \geq n-2$. Then by Theorem 1.1 max $\Delta^{*}(G)=$ $\max \{r-1, n-2\}=n-2$. Since $\mathrm{m}(G) \geq n-2$, there is a minimal non-half-factorial LCN-set G_{0} with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$, and then 1. implies that $r \geq n-1$, a contradiction.
3. Let $G_{0} \subset G$ be a non-half-factorial LCN-subset. We need to prove that $\min \Delta\left(G_{0}\right) \leq n-4$. Without restriction we may suppose that G_{0} is minimal non-half-factorial which implies that G_{0} is indecomposable by Lemma 3.3. By Lemma 3.4.3, we may suppose that for each $g \in G_{0}$ we have $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$. Suppose that the order of each element of G_{0} is a prime power. Since G_{0} is indecomposable, Lemma 3.3 implies that each order is a power of a fixed prime $p \in \mathbb{P}$, and thus $\left\langle G_{0}\right\rangle$ is a p-group. By Proposition 3.2 we infer that

$$
\min \Delta\left(G_{0}\right) \leq \mathrm{m}\left(\left\langle G_{0}\right\rangle\right)=\mathrm{r}\left(\left\langle G_{0}\right\rangle\right)-1 \leq \mathrm{r}(G)-1 \leq n-4
$$

From now on we suppose that there is an element $g \in G_{0}$ whose order is not a prime power. If $\left|G_{0}\right| \leq n-2$, then $\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2 \leq n-4$ by Lemma 3.1.3. Thus we may suppose that $\left|G_{0}\right| \geq n-1 \geq r+2$ and we distinguish two cases.
CASE 1: There exists a subset $G_{2} \subset G_{0}$ such that $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$ and $\left|G_{2}\right| \leq\left|G_{0}\right|-2$.
Then Lemma 3.6 implies that $\min \Delta\left(G_{0}\right) \leq n-4$.
CASE 2: Every subset $G_{1} \subset G_{0}$ with $\left|G_{1}\right|=\left|G_{0}\right|-1$ is a minimal generating set of $\left\langle G_{0}\right\rangle$.
Then for each $h \in G_{0}, G_{0} \backslash\{h\}$ is half-factorial and $h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$. Thus Lemma 3.5implies that $\left|G_{0}\right| \leq n-2$, a contradiction.

Lemma 4.3. Let G be a finite abelian group with $\exp (G)=n, r(G)=r$, and let $G_{0} \subset G$ be a minimal non-half-factorial LCN-set with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$.

1. If $A \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(A)=1$, then $|\operatorname{supp}(A)| \leq \frac{n}{2}$.
2. If $A \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(A)>1$, then $\mathrm{k}(A)<r$ and $S A^{-1}$ is also an atom where $S=\prod_{g \in G_{0}} g^{\operatorname{ord}(g)}$.

Proof. By Lemma 4.2, we have $r \geq n-1,\left|G_{0}\right|=r+1$, and for each $h \in G_{0}, h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$. Let $A \in \mathcal{A}\left(G_{0}\right)$.

1. Since $\mathrm{k}(A)=1$, it follows that $|\operatorname{supp}(A)| \leq|A| \leq n$. Assume that $|\operatorname{supp}(A)|=n$. Then $\mathrm{v}_{g}(A)=1$ for each $g \in \operatorname{supp}(A)$. Since G_{0} is a minimal non-half-factorial LCN-set, there is a $V \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(V)>1$ and $\operatorname{supp}(V)=G_{0}$. Therefore $A \mid V$, a contradiction. Thus $|\operatorname{supp}(A)| \leq n-1$ whence $\operatorname{supp}(A) \subsetneq G_{0}$. Therefore Lemma 3.4. 2 implies that $\operatorname{gcd}\left(\mathrm{v}_{g}(A), \operatorname{ord}(g)\right)>1$ for each $g \in \operatorname{supp}(A)$, and hence $|\operatorname{supp}(A)| \leq$ $|A| / 2 \leq n / 2$.
2. Let $A \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(A)>1$. Then $A\left|S, r+1=\left|G_{0}\right|=\max \mathrm{L}(S)\right.$, and $\mathrm{L}(S) \backslash\{r+1\} \neq \emptyset$. By Theorem 1.1, we have $\min \Delta\left(G_{0}\right)=r-1$, hence $\mathrm{L}(S)=\{2, r+1\}$, and thus $S A^{-1}$ is an atom. If $\mathrm{k}\left(S A^{-1}\right)=1$, then 1 . implies that $\left|\operatorname{supp}\left(S A^{-1}\right)\right| \leq n / 2$, but on the other hand we have $\left|\operatorname{supp}\left(S A^{-1}\right)\right|=$
$\left|G_{0}\right|=r+1 \geq n$, a contradiction. Therefore we obtain that $\mathrm{k}\left(S A^{-1}\right)>1$ and hence $r+1=\mathrm{k}(S)=$ $\mathrm{k}(A)+\mathrm{k}\left(S A^{-1}\right)$ implies that $\mathrm{k}(A)<r$.

Lemma 4.4. Let G be a finite abelian group with $\exp (G)=n, r(G)=r$, and let $G_{0} \subset G$ be a minimal non-half-factorial LCN-set with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$. Let $g \in G_{0}$ with $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$ and $d \in[1, \operatorname{ord}(g)]$ be minimal such that $d g \in\left\langle E^{*}\right\rangle$ for some subset $E^{*} \subsetneq G_{0} \backslash\{g\}$. Then $d \mid \operatorname{ord}(g)$, and we have

1. Let $k \in[1, \operatorname{ord}(g)]$. If $k g \notin\langle E\rangle$ for any $E \subsetneq G_{0} \backslash\{g\}$, then there is an atom A with $\vee_{g}(A)=k$ and $\mathrm{k}(A)>1$.
2. Let $k \in[1, \operatorname{ord}(g)-1]$ with $d \nmid k$. Then there is an atom A with $\mathrm{v}_{g}(A)=k$ and $\mathrm{k}(A)>1$. In particular, if $B \in \mathcal{B}\left(G_{0}\right)$ with $\mathrm{v}_{g}(B)=k$ and $B \mid \prod_{g \in G_{0}} g^{\operatorname{ord}(g)}$, then B is an atom.
3. If A_{1}, A_{2} are atoms with $\mathrm{v}_{g}\left(A_{1}\right) \equiv \mathrm{v}_{g}\left(A_{2}\right) \bmod d$, then $\mathrm{k}\left(A_{1}\right)=\mathrm{k}\left(A_{2}\right)$.

Proof. Note that by Lemma 4.2, we have $\left|G_{0}\right|=r+1$ and $r \geq n-1$. The minimality of d and Lemma 3.4. 1 imply that $d \mid \operatorname{ord}(g)$. We set $S=\prod_{g \in G_{0}} g^{\operatorname{ord}(g)}$.

1. Since $k g \in\left\langle G_{0} \backslash\{g\}\right\rangle$, there is a zero-sum sequence A such that $\mathrm{v}_{g}(A)=k$, and we choose an A with minimal length $|A|$. Then $\operatorname{supp}(A)=G_{0}$ by assumption on $k g$, and we assert that A is an atom. If this holds, then $\mathrm{k}(A)>1$ by Lemma 4.31.

Assume to the contrary that $A=A_{1} \cdot \ldots \cdot A_{s}$ with $s \geq 2$ and atoms A_{1}, \ldots, A_{s}. The minimality of $|A|$ implies that $\mathrm{v}_{g}\left(A_{i}\right)>0$ for each $i \in[1, s]$. If there exists an $i \in[1, s]$ such that $\mathrm{k}\left(A_{i}\right)>1$, say A_{1}, then $S=A_{1} \cdot \ldots \cdot A_{s}\left(S A^{-1}\right)$ but $S A_{1}^{-1}=A_{2} \cdot \ldots \cdot A_{s}\left(S A^{-1}\right)$ is not an atom, a contradiction to Lemma 4.32. Thus, for each $i \in[1, s]$, we have $\mathrm{k}\left(A_{i}\right)=1$ and hence $\operatorname{supp}\left(A_{i}\right) \subsetneq G_{0}$ by Lemma 4.3, 1.

For each $i \in[1, s]$, we set $t_{i}=\mathrm{v}_{g}\left(A_{i}\right), d_{i}=\operatorname{gcd}\left(\left\{t_{1}, \ldots, t_{i}, \operatorname{ord}(g)\right\}\right)$, and let $E_{i} \subset G_{0} \backslash\{g\}$ be minimal such that $d_{i} g \in\left\langle E_{i}\right\rangle$. Note that $k=t_{1}+\ldots+k_{s}$. Since $d_{1} g \in\left\langle t_{1} g\right\rangle \subset\left\langle\operatorname{supp}\left(A_{1}\right) \backslash\{g\}\right\rangle \subsetneq\left\langle G_{0} \backslash\{g\}\right\rangle$, it follows that $E_{1} \subsetneq G_{0} \backslash\{g\}$. Since $k g \in\left\langle d_{s} g\right\rangle \subset\left\langle E_{s}\right\rangle$, it follows that $E_{s}=G_{0} \backslash\{g\}$.

Let $l \in[1, s-1]$ be maximal such that $E_{l} \subsetneq G_{0} \backslash\{g\}$. Then $d_{l} g \in\left\langle E_{l}\right\rangle$ and $E_{l+1}=G_{0} \backslash\{g\}$. Let $d_{0} \in \mathbb{N}$ be the minimal such that $d_{0} g \in E_{l}$. Then Lemma 3.41 implies that $d_{0} \mid d_{l}$ and there exists an atom W such that $\operatorname{supp}(W)=\{g\} \cup E_{l}, \mathrm{v}_{g}(W)=d_{0}$, and $\mathrm{k}(W)=1$. Since $d_{l+1} g \in\left\langle d_{l} g, t_{l+1} g\right\rangle \subset$ $\left\langle E_{l} \cup \operatorname{supp}\left(A_{l+1}\right) \backslash\{g\}\right\rangle$, we have that $E_{l} \cup \operatorname{supp}\left(A_{l+1}\right) \backslash\{g\}=G_{0} \backslash\{g\}$. Then Lemma 4.3. 1 implies that $\left|G_{0}\right| \leq 1+\left|E_{l}\right|+\left|\operatorname{supp}\left(A_{l+1}\right) \backslash\{g\}\right| \leq 1+(n / 2-1)+(n / 2-1)=n-1$, a contradiction.
2. If $k g \in\left\langle E_{1}\right\rangle$ for some $E_{1} \subsetneq G_{0} \backslash\{g\}$, then $\operatorname{gcd}(d, k) g \in\langle k g\rangle \subset\left\langle E_{1}\right\rangle$, whence the minimality of d implies that $\operatorname{gcd}(d, k)=d$ and $d \mid k$, a contradiction. Therefore, we obtain that $k g \notin\langle E\rangle$ for any $E \subsetneq G_{0} \backslash\{g\}$. Thus 1 . implies that there is an atom A with $\mathrm{v}_{g}(A)=k$ and $\mathrm{k}(A)>1$.

Let $B \in \mathcal{B}\left(G_{0}\right)$ with $B \mid S$ and $\vee_{g}(B)=k$. We set $B=A_{1} \cdot \ldots \cdot A_{s}$ with $s \in \mathbb{N}$ and atoms A_{1}, \ldots, A_{s}. Then $\mathrm{v}_{g}\left(A_{1}\right)+\ldots+\mathrm{v}_{g}\left(A_{s}\right)=\mathrm{v}_{g}(B)=k$. Since $d \nmid k$, there is an $i \in[1, s]$ with $d \nmid \mathrm{v}_{g}\left(A_{i}\right)$. We want to show that $\mathrm{k}\left(A_{i}\right)>1$, and assume to the contrary that $\mathrm{k}\left(A_{i}\right)=1$. Then $\left|\operatorname{supp}\left(A_{i}\right)\right| \leq n / 2$ by Lemma 4.31. Furthermore, $d^{\prime}=\operatorname{gcd}\left(d, \vee_{g}\left(A_{i}\right)\right)<d$, but

$$
d^{\prime} g \in\left\langle\mathrm{v}_{g}\left(A_{i}\right) g\right\rangle \subset\left\langle\operatorname{supp}\left(A_{i}\right) \backslash\{g\}\right\rangle \quad \text { and } \quad \operatorname{supp}\left(A_{i}\right) \backslash\{g\} \subsetneq G_{0} \backslash\{g\},
$$

a contradiction to the minimality of d. Therefore it follows that $\mathrm{k}\left(A_{i}\right)>1$. Since $g \mid S B^{-1}$, it follows that $S \neq B$. Since $S=A_{i}\left(\left(B A_{i}^{-1}\right)\left(S B^{-1}\right)\right)$ and $S A_{i}^{-1}$ is an atom by Lemma 4.3, 2 , it follows that $B=A_{i} \in \mathcal{A}\left(G_{0}\right)$.
3. Let $A_{1} \in \mathcal{A}\left(G_{0}\right)$. We assert that $\mathrm{k}\left(A_{1}\right)=\mathrm{k}\left(A_{2}\right)$ for all $A_{2} \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{v}_{g}\left(A_{1}\right) \equiv \mathrm{v}_{g}\left(A_{2}\right) \bmod d$. We distinguish two cases.
CASE 1: $d \mid \mathrm{v}_{g}\left(A_{1}\right)$.
There is an $A \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{v}_{g}(A)=d$ and $\mathrm{k}(A)=1$. It is sufficient to show that $\mathrm{k}\left(A_{1}\right)=1$. There are $l \in \mathbb{N}$ and $V_{1}, \ldots, V_{l} \in \mathcal{A}\left(G_{0} \backslash\{g\}\right)$ (hence $\mathrm{k}\left(V_{1}\right)=\ldots=\mathrm{k}\left(V_{l}\right)=1$) such that

$$
A_{1} A^{\frac{\operatorname{ord}(g)-\mathrm{v}_{g}\left(A_{1}\right)}{d}}=g^{\operatorname{ord}(g)} V_{1} \cdot \ldots \cdot V_{l} \quad \text { hence } \mathrm{k}\left(A_{1}\right)=1+l-\frac{\operatorname{ord}(g)-\mathrm{v}_{g}\left(A_{1}\right)}{d}
$$

Furthermore, $\min \Delta\left(G_{0}\right)=r-1$ divides

$$
(l+1)-\left(1+\frac{\operatorname{ord}(g)-\mathrm{v}_{g}\left(A_{1}\right)}{d}\right)=\mathrm{k}\left(A_{1}\right)-1
$$

Since $\mathrm{k}\left(A_{1}\right)<r$ by Lemma 4.3, it follows that $\mathrm{k}\left(A_{1}\right)=1$.
CASE 2: $d \nmid \mathrm{v}_{g}\left(A_{1}\right)$.
Let $d_{0} \in[1, d-1]$ such that $\mathrm{v}_{g}\left(A_{1}\right) \equiv d_{0} \bmod d$. By 2 ., there are atoms B_{l} such that $\mathrm{v}_{g}\left(B_{l}\right)=d_{0}+l d$ for all $l \in \mathbb{N}_{0}$ with $d_{0}+l d<\operatorname{ord}(g)$. Thus by an inductive argument it is sufficient to prove the assertion for those atoms A_{2} with $\mathrm{v}_{g}\left(A_{2}\right)=\mathrm{v}_{g}\left(A_{1}\right)$ and with $\mathrm{v}_{g}\left(A_{2}\right)=\mathrm{v}_{g}\left(A_{1}\right)+d$.

Suppose that $\mathrm{v}_{g}\left(A_{1}\right)=\mathrm{v}_{g}\left(A_{2}\right)$. By 2., there is an atom V such that $\mathrm{v}_{g}(V)=\operatorname{ord}(g)-\mathrm{v}_{g}\left(A_{1}\right)$. Then there are $l \in \mathbb{N}$ and $V_{1}, \ldots, V_{l} \in \mathcal{A}\left(G_{0} \backslash\{g\}\right)$ such that $A_{1} V=g^{\operatorname{ord}(g)} V_{1} \cdot \ldots \cdot V_{l}$ and hence $\mathrm{k}\left(A_{1}\right)+$ $\mathrm{k}(V)=1+\sum_{i=1}^{l} \mathrm{k}\left(V_{i}\right)=l+1$. Since min $\Delta\left(G_{0}\right)=r-1$ divides $l-1$, it follows that either $l=r$ or $l \geq 2 r-1$. If $l \geq 2 r-1$, then $\mathrm{k}\left(A_{1}\right) \geq r$ or $\mathrm{k}(V) \geq r$, a contradiction to Lemma 4.3. Therefore $\mathrm{k}\left(A_{1}\right)+\mathrm{k}(V)=r+1=\mathrm{k}\left(A_{2}\right)+\mathrm{k}(V)$ and hence $\mathrm{k}\left(A_{1}\right)=\mathrm{k}\left(A_{2}\right)$.

Suppose that $\mathrm{v}_{g}\left(A_{1}\right)=\mathrm{v}_{g}\left(A_{2}\right)+d$. Let $E \subsetneq G_{0} \backslash\{g\}$ such that $d g \in\langle E\rangle$. Then there is an $A \in \mathcal{A}(E \cup\{g\})$ with $\mathrm{v}_{g}(A)=d$, and clearly $\mathrm{k}(A)=1$. Let V_{1}, \ldots, V_{t} be all the atoms with $V_{\nu} \mid A_{2} A$ and $\left|\operatorname{supp}\left(V_{\nu}\right)\right|=1$ for all $\nu \in[1, t]$. Since $\mathrm{v}_{g}\left(A_{2} A\right)=\mathrm{v}_{g}\left(A_{1}\right)<\operatorname{ord}(g)$, it follows that $B=A_{2} A\left(V_{1} \cdot \ldots \cdot V_{t}\right)^{-1}$ divides S and that $\mathrm{v}_{g}(B)=\mathrm{v}_{g}\left(A_{1}\right)$. Therefore 2. implies that B is an atom, and by Step 1 we obtain that $\mathrm{k}(B)=\mathrm{k}\left(A_{1}\right)$. If $t \geq 2$, then $A_{2} A=B V_{1} \cdot \ldots \cdot V_{t}$ implies $t \geq 1+\min \Delta\left(G_{0}\right)=r$, and thus $\mathrm{k}\left(A_{2}\right) \geq r$, a contradiction to Lemma 4.3. Therefore we obtain that $t=1$ and thus $\mathrm{k}\left(A_{2}\right)+1=\mathrm{k}(B)+1=\mathrm{k}\left(A_{1}\right)+1$.

Theorem 4.5. Let G be a finite abelian group with $\exp (G)=n, r(G)=r$, and let $G_{0} \subset G$ be a minimal non-half-factorial set with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$.

1. If $r<n-1$, then there exists $g \in G$ with $\operatorname{ord}(g)=n$ such that $G_{0}=\{g,-g\}$.
2. Let $r=n-1$. If G_{0} is not an LCN-set, then there exists $g \in G$ with $\operatorname{ord}(g)=n$ such that $G_{0}=\{g,-g\}$. If G_{0} is an LCN-set, then $\left|G_{0}\right|=r+1$ and for each $h \in G_{0}, h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$.
3. If $r \geq n$, then G_{0} is an LCN-set with $\left|G_{0}\right|=r+1$ and for each $h \in G_{0}, h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$.
4. If $r \geq n-1, G_{0}$ is an LCN-set, and n is odd, then there exists an element $g \in G_{0}$ such that $G_{0} \backslash\{g\}$ is independent.

Proof. 1. Suppose that $r<n-1$. Then Lemma 4.2 implies that G_{0} is not an LCN-set. Thus Lemma $4.1,2$ implies that G_{0} has the asserted form.
2. If G_{0} is not an LCN-set, then the assertion follows from Lemma4.1.2. If G_{0} is an LCN-set, then the assertion follows from Lemma 4.2. 1.
3. Suppose that $r \geq n$. Then Theorem 1.1]implies that $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)=r-1$. Thus Lemma 3.1.3.(a) imply that G_{0} is an LCN-set. Hence the assertion follows from Lemma 4.2,1.
4. Let $r \geq n-1, G_{0}$ be an LCN-set, and suppose that n is odd. By Lemma [3.4] (Properties (a) and (d)), we may suppose without restriction that $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$ for each $g \in G_{0}$. Lemma 4.2 implies that $\left|G_{0}\right|=r+1$ and that for each $g \in G_{0}$ we have $g \notin\langle E\rangle$ for any $E \subsetneq G_{0} \backslash\{g\}$.

Assume to the contrary that $G_{0} \backslash\{h\}$ is dependent for each $h \in G_{0}$. Then there exist $g \in G_{0}$, $d \in[2, \operatorname{ord}(g)-1]$, and $E \subsetneq G_{0} \backslash\{g\}$ such that $d g \in\langle E\rangle$. Now let $d \in \mathbb{N}$ be minimal over all configurations (g, E, d), and fix g, E belonging to d. It follows that we have an atom A with $\operatorname{supp}(A) \subsetneq G_{0}$ and $\mathrm{v}_{g}(A)=d$. By Lemma 4.4, we obtain that $d \mid \operatorname{ord}(g)$, and hence $d \geq 3$ because n is odd.

Since $G_{0} \backslash\{g\}$ is dependent, there exist atoms $U^{\prime} \in \mathcal{A}\left(G_{0} \backslash\{g\}\right)$ with $\left|\operatorname{supp}\left(U^{\prime}\right)\right|>1$. Thus, by Lemma 3.4. 1, there exist an $U \in \mathcal{A}\left(G_{0} \backslash\{g\}\right)$ and an $h \in \operatorname{supp}(U)$ such that $\mathrm{v}_{h}(U) \leq \frac{\operatorname{ord}(h)}{2}$ and $\mathrm{v}_{h}(U) \mid \operatorname{ord}(h)$.

By Lemma 4.42, there are atoms A_{1}, \ldots, A_{d-1} with $\mathrm{v}_{g}\left(A_{i}\right)=i$ and $\mathrm{k}\left(A_{i}\right)>1$ for each $i \in[1, d-1]$, and we choose each A_{i} in such a way that $\mathrm{v}_{h}\left(A_{i}\right)$ is minimal. We continue with the following assertion.
A. For each $i \in[1, d-1]$, we have $\mathrm{v}_{h}\left(A_{i}\right)<\mathrm{v}_{h}(U) \leq \frac{\operatorname{ord}(h)}{2}$.

Proof of A. Assume to the contrary that there is an $i \in[1, d-1]$ such that $\mathrm{v}_{h}\left(A_{i}\right) \geq \mathrm{v}_{h}(U)$. Then

$$
h \notin F=\left\{h^{\prime} \in \operatorname{supp}(U) \mid \mathrm{v}_{h^{\prime}}\left(A_{i}\right)<\mathrm{v}_{h^{\prime}}(U)\right\} \quad \text { and } \quad U \mid A_{i} \prod_{h^{\prime} \in F} h^{\prime \operatorname{ord}\left(h^{\prime}\right)} .
$$

Hence $A_{i} \prod_{h^{\prime} \in F} h^{\prime \operatorname{ord}\left(h^{\prime}\right)}=U B_{i}$ for some zero-sum sequence B_{i}. By Lemma4.4 (items 2. and 3.), B_{i} is an atom with $i=\mathrm{v}_{g}\left(A_{i}\right)=\mathrm{v}_{g}\left(B_{i}\right)$ and with $\mathrm{k}\left(B_{i}\right)=\mathrm{k}\left(A_{i}\right)>1$. Since $\mathrm{v}_{h}\left(A_{i}\right)>\mathrm{v}_{h}\left(B_{i}\right)$, this is a contradiction to the choice of A_{i}.
(Proof of A)
Let $j \in[1, d-1]$ be such that $\mathrm{k}\left(A_{j}\right)=\min \left\{\mathrm{k}\left(A_{1}\right), \ldots, \mathrm{k}\left(A_{d-1}\right)\right\}$.
Suppose that $j \geq 2$. Let V_{1}, \ldots, V_{t} be all the atoms with $V_{s} \mid A_{1} A_{j-1}$ and $\left|\operatorname{supp}\left(V_{s}\right)\right|=1$ for all $s \in[1, t]$. Then $B=A_{1} A_{j-1}\left(V_{1} \cdot \ldots \cdot V_{t}\right)^{-1}$ is an atom by Lemma 4.4] 2. Since $\mathrm{v}_{g}\left(A_{1} A_{j-1}\right)=j<\operatorname{ord}(g)$, $\mathrm{v}_{h}\left(A_{1} A_{j-1}\right)<\operatorname{ord}(h)$, and $\mathrm{v}_{f}\left(A_{1} A_{j-1}\right)<2 \operatorname{ord}(f)$ for all $f \in G_{0} \backslash\{g, h\}$, it follows that $t \leq\left|G_{0}\right|-2 \leq r-1$. Since $\min \Delta\left(G_{0}\right)=r-1$ and $A_{1} A_{j-1}=V_{1} \cdot \ldots \cdot V_{t} B$, we must have $t=1$. Therefore $\mathrm{k}\left(A_{1}\right)+\mathrm{k}\left(A_{j-1}\right)=$ $1+\mathrm{k}(B)$ whence $\mathrm{k}(B)<\mathrm{k}\left(A_{j-1}\right)$. Since

$$
\mathrm{v}_{g}(B)=\mathrm{v}_{g}\left(V_{1} B\right)=\mathrm{v}_{g}\left(A_{1} A_{j-1}\right)=j=\mathrm{v}_{g}\left(A_{j}\right),
$$

Lemma 4.4.3 implies that $\mathrm{k}(B)=\mathrm{k}\left(A_{j}\right)=\min \left\{\mathrm{k}\left(A_{1}\right), \ldots, \mathrm{k}\left(A_{d-1}\right)\right\}$, a contradiction.
Suppose that $j=1$. Let V_{1}, \ldots, V_{t} be all the atoms with $V_{s} \mid A_{2} A_{d-1}$ and $\left|\operatorname{supp}\left(V_{s}\right)\right|=1$ for all $s \in[1, t]$. Then $B=A_{2} A_{d-1}\left(V_{1} \cdot \ldots \cdot V_{t}\right)^{-1}$ is an atom by Lemma4.42. Since $v_{g}\left(A_{2} A_{d-1}\right)=d+1<\operatorname{ord}(g)$, $\mathrm{v}_{h}\left(A_{2} A_{d-1}\right)<\operatorname{ord}(h)$, and $\mathrm{v}_{f}\left(A_{1} A_{j-1}\right)<2 \operatorname{ord}(f)$ for all $f \in G_{0} \backslash\{g, h\}$, it follows that $t \leq\left|G_{0}\right|-2 \leq r-1$. Since $\min \Delta\left(G_{0}\right)=r-1$ and $A_{2} A_{d-1}=V_{1} \cdot \ldots \cdot V_{t} B$, we must have $t=1$. Therefore $\mathrm{k}\left(A_{2}\right)+\mathrm{k}\left(A_{d-1}\right)=$ $1+\mathrm{k}(B)$ whence $\mathrm{k}(B)<\mathrm{k}\left(A_{2}\right)$. Since

$$
\mathrm{v}_{g}(B)=\mathrm{v}_{g}\left(V_{1} B\right)=\mathrm{v}_{g}\left(A_{2} A_{d-1}\right)=d+1 \equiv 1=\mathrm{v}_{g}\left(A_{1}\right) \bmod d
$$

Lemma 4.4.3 implies that $\mathrm{k}(B)=\mathrm{k}\left(A_{1}\right)=\min \left\{\mathrm{k}\left(A_{1}\right), \ldots, \mathrm{k}\left(A_{d-1}\right)\right\}$, a contradiction.

In the following remark we provide the first example of a minimal non-half-factorial subset G_{0} with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$ which is not simple. Furthermore, we provide an example that the structural statement given in Theorem 4.5 4 does not hold without the assumption that the exponent is odd.

Remarks 4.6. Following Schmid, we say that a nonempty subset $G_{0} \subset G \backslash\{0\}$ is simple if there exists some $g \in G_{0}$ such that $G_{0} \backslash\{g\}$ is independent, $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$ but $g \notin\langle E\rangle$ for any subset $E \subsetneq G_{0} \backslash\{g\}$.

If G_{0} is a simple subset, then $\left|G_{0}\right| \leq \mathrm{r}^{*}(G)+1$ and G_{0} is indecomposable. Moreover, if $G_{1} \subset G$ is a subset such that any proper subset of G_{1} is independent, then there is a subset G_{0} and a transfer homomorphism $\theta: \mathcal{B}\left(G_{1}\right) \rightarrow \mathcal{B}\left(G_{0}\right)$ where $G_{0} \backslash\{0\}$ is simple or independent (for all this see [26, Section 4]). Furthermore, Theorem 4.7 in [26] provides an intrinsic description of the sets of atoms of a simple set.

In elementary p-groups, every minimal non-half-factorial subset is simple ([26, Lemma 4.4]), and so far there are no examples of minimal non-half-factorial sets G_{0} with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$ which are not simple.

1. Let $G=C_{9}^{r-1} \oplus C_{27}$ with $r \geq 26$, and let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=9$ for $i \in[1, r-1]$ and $\operatorname{ord}\left(e_{r}\right)=27$. Then max $\Delta^{*}(G)=r-1$ by Theorem 1.1. We set $G_{0}=\left\{3 e_{1}, \ldots, 3 e_{r-1}, e_{r}, g\right\}$ with $g=e_{1}+\ldots+e_{r}$. Then $\left(e_{r}, g\right)$ is not independent, $G_{0} \backslash\{g\}$ and $G_{0} \backslash\left\{e_{r}\right\}$ are independent, but $g \notin\left\langle G_{0} \backslash\{g\}\right\rangle$ and $e_{r} \notin\left\langle G_{0} \backslash\left\{e_{r}\right\}\right\rangle$. Therefore G_{0} is not simple. It remains to show that $\min \Delta\left(G_{0}\right) \geq r-1$. Then G_{0} is minimal non-half-factorial and $\min \Delta\left(G_{0}\right)=r-1$ because $\max \Delta^{*}(G)=r-1$.

We have

$$
\begin{aligned}
W_{1}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)=1\right\}= & \left\{\left(3 e_{1}\right)^{3}, \ldots,\left(3 e_{r-1}\right)^{3}, e_{r}^{27}, g^{27}, g^{9} e_{r}^{18}, g^{18} e_{r}^{9}\right\}, \\
W_{2}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)>1\right\}= & \left\{A_{3}=g^{3} e_{r}^{24}\left(3 e_{1}\right)^{2} \cdot \ldots \cdot\left(3 e_{r-1}\right)^{2}, A_{6}=g^{6} e_{r}^{21}\left(3 e_{1}\right) \cdot \ldots \cdot\left(3 e_{r-1}\right),\right. \\
& A_{12}=g^{12} e_{r}^{15}\left(3 e_{1}\right)^{2} \cdot \ldots \cdot\left(3 e_{r-1}\right)^{2}, A_{15}=g^{15} e_{r}^{12}\left(3 e_{1}\right) \cdot \ldots \cdot\left(3 e_{r-1}\right), \\
& \left.A_{21}=g^{21} e_{r}^{6}\left(3 e_{1}\right)^{2} \cdot \ldots \cdot\left(3 e_{r-1}\right)^{2}, A_{24}=g^{24} e_{r}^{3}\left(3 e_{1}\right) \cdot \ldots \cdot\left(3 e_{r-1}\right)\right\}
\end{aligned}
$$

and $\mathrm{k}\left(A_{3}\right)=\mathrm{k}\left(A_{12}\right)=\mathrm{k}\left(A_{21}\right)=(2 r+1) / 3, \mathrm{k}\left(A_{6}\right)=\mathrm{k}\left(A_{15}\right)=\mathrm{k}\left(A_{24}\right)=(r+2) / 3$. For any $d \in \Delta\left(G_{0}\right)$, there exists a $B \in \mathcal{B}\left(G_{0}\right)$ such that B has two such factorizations, say

$$
B=U_{1} \cdot \ldots \cdot U_{s} V_{1} \cdot \ldots \cdot V_{t} W_{1} \cdot \ldots \cdot W_{u}=X_{1} \cdot \ldots \cdot X_{s^{\prime}} Y_{1} \cdot \ldots \cdot Y_{t^{\prime}} Z_{1} \cdot \ldots \cdot Z_{u^{\prime}}
$$

where all $U_{i}, V_{j}, W_{k}, X_{i^{\prime}}, Y_{j^{\prime}}, Z_{k^{\prime}}$ are atoms, $s, t, u, s^{\prime}, t^{\prime}, u^{\prime} \in \mathbb{N}_{0}$ with $d=(s+t+u)-\left(s^{\prime}+t^{\prime}+u^{\prime}\right), \mathrm{k}\left(U_{1}\right)=$ $\ldots=\mathrm{k}\left(U_{s}\right)=\mathrm{k}\left(X_{1}\right)=\ldots=\mathrm{k}\left(X_{s^{\prime}}\right)=\frac{2 r+1}{3}, \mathrm{k}\left(V_{1}\right)=\ldots=\mathrm{k}\left(V_{t}\right)=\mathrm{k}\left(Y_{1}\right)=\ldots=\mathrm{k}\left(Y_{t^{\prime}}\right)=(r+2) / 2$, and $\mathrm{k}\left(W_{1}\right)=\ldots=\mathrm{k}\left(W_{u}\right)=\mathrm{k}\left(Z_{1}\right)=\ldots=\mathrm{k}\left(Z_{u^{\prime}}\right)=1$. This implies that

$$
\mathrm{k}(B)=s\left(\frac{2 r+1}{3}\right)+t\left(\frac{r+2}{3}\right)+u=s^{\prime}\left(\frac{2 r+1}{3}\right)+t^{\prime}\left(\frac{r+2}{3}\right)+u^{\prime}
$$

and $\mathrm{v}_{3 e_{1}}(B) \equiv 2 s+t \equiv 2 s^{\prime}+t^{\prime} \bmod 3$. Since $d=(s+t+u)-\left(s^{\prime}+t^{\prime}+u^{\prime}\right)=\frac{r-1}{3}\left(\left(t^{\prime}-t\right)+2\left(s^{\prime}-s\right)\right)>0$, we obtain that $\left(t^{\prime}-t\right)+2\left(s^{\prime}-s\right) \geq 3$ and hence $d \geq r-1$.
2. We provide an example of a minimal non-half-factorial LCN-set with $\min \Delta\left(G_{0}\right)=\max \Delta^{*}(G)$ in a group G of even exponent which has no element $g \in G_{0}$ such that $G_{0} \backslash\{g\}$ is independent. In particular, G_{0} is not simple and the assumption in Theorem4.54, that the exponent of the group is odd, cannot be cancelled.

Let $G=C_{2}^{r-2} \oplus C_{4} \oplus C_{4}$ with $r \geq 3$, and let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=2$ for $i \in[1, r-2]$ and $\operatorname{ord}\left(e_{r-1}\right)=\operatorname{ord}\left(e_{r}\right)=4$. We set $G_{0}=\left\{e_{1}, \ldots, e_{r-3}, e_{r-2}+e_{r-1}, e_{r-1}, e_{r}, g\right\}$ with $g=e_{1}+\ldots+e_{r-2}+e_{r}$. Since $\left(e_{r-2}+e_{r-1}, e_{r-1}\right)$ is dependent and $\left(e_{r}, g\right)$ is dependent, we obtain that there is no $h \in G_{0}$ such that $G_{0} \backslash\{h\}$ is independent. We have

$$
\begin{aligned}
W_{1}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)=1\right\}= & \left\{\left(e_{1}\right)^{2}, \ldots,\left(e_{r-3}\right)^{2},\left(e_{r-2}+e_{r-1}\right)^{4},\left(e_{r-1}\right)^{4}, e_{r}^{4}, g^{4},\right. \\
& \left.\left(e_{r-2}+e_{r-1}\right)^{2}\left(e_{r-1}\right)^{2}, g^{2} e_{r}^{2}\right\} \\
W_{2}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)>1\right\}=\{ & A_{1}=g e_{r}^{3}\left(e_{r-2}+e_{r-1}\right) e_{r-1}^{3} e_{1} \cdot \ldots \cdot e_{r-3}, \\
& B_{1}=g e_{r}^{3}\left(e_{r-2}+e_{r-1}\right)^{3} e_{r-1} e_{1} \cdot \ldots \cdot e_{r-3}, \\
& A_{3}=g^{3} e_{r}\left(e_{r-2}+e_{r-1}\right) e_{r-1}^{3} e_{1} \cdot \ldots \cdot e_{r-3}, \\
& \left.B_{3}=g^{3} e_{r}\left(e_{r-2}+e_{r-1}\right)^{3} e_{r-1} e_{1} \cdot \ldots \cdot e_{r-3}\right\}
\end{aligned}
$$

and $\mathrm{k}\left(A_{1}\right)=\mathrm{k}\left(A_{3}\right)=\mathrm{k}\left(B_{1}\right)=\mathrm{k}\left(B_{3}\right)=(r+1) / 2$. Theorem 1.1 implies that max $\Delta^{*}(G)=r-1$, and thus it remains to show that $\min \Delta\left(G_{0}\right)=r-1$.

For any $d \in \Delta\left(G_{0}\right)$, there exists a $B \in \mathcal{B}\left(G_{0}\right)$ such that B has two such factorizations, say

$$
B=U_{1} \cdot \ldots \cdot U_{s} V_{1} \cdot \ldots \cdot V_{t}=X_{1} \cdot \ldots \cdot X_{u} Y_{1} \cdot \ldots \cdot Y_{v}
$$

where all $U_{i}, V_{j}, X_{k}, Y_{l}$ are atoms, $s, t, u, v \in \mathbb{N}_{0}$ with $d=u+v-(s+t), \mathrm{k}\left(U_{1}\right)=\ldots=\mathrm{k}\left(U_{s}\right)=\mathrm{k}\left(X_{1}\right)=$ $\ldots=\mathrm{k}\left(X_{u}\right)=1$, and $\mathrm{k}\left(V_{1}\right)=\ldots=\mathrm{k}\left(V_{t}\right)=\mathrm{k}\left(Y_{1}\right)=\ldots=\mathrm{k}\left(Y_{v}\right)=(r+1) / 2$. This implies that

$$
\mathrm{k}(B)=s+t \frac{r+1}{2}=u+v \frac{r+1}{2}
$$

and $\mathrm{v}_{g}(B) \equiv t \equiv v \bmod 2$. Since $d=(v+u)-(s+t)=(t-v) \frac{r-1}{2}>0$, we obtain that $t-v \geq 2$ and hence $d \geq r-1$.

References

[1] N.R. Baeth and A. Geroldinger, Monoids of modules and arithmetic of direct-sum decompositions, Pacific J. Math. 271 (2014), $257-319$.
[2] N.R. Baeth and D. Smertnig, Factorization theory: From commutative to noncommutative settings, J. Algebra, to appear.
[3] N.R. Baeth and R. Wiegand, Factorization theory and decomposition of modules, Am. Math. Mon. 120 (2013), 3 - 34.
[4] Gyu Whan Chang, Every divisor class of Krull monoid domains contains a prime ideal, J. Algebra 336 (2011), 370 377.
[5] S. Chang, S.T. Chapman, and W.W. Smith, On minimum delta set values in block monoids over cyclic groups, Ramanujan J. 14 (2007), $155-171$.
[6] S.T. Chapman, F. Gotti, and R. Pelayo, On delta sets and their realizable subsets in Krull monoids with cyclic class groups, Colloq. Math. 137 (2014), $137-146$.
[7] S.T. Chapman, W.A. Schmid, and W.W. Smith, On minimal distances in Krull monoids with infinite class group, Bull. Lond. Math. Soc. 40 (2008), $613-618$.
[8] W. Gao, Y. Li, J. Peng, C. Plyley, and G. Wang, On the index of sequences over cyclic groups, Acta Arith. 148 (2011), 119-134.
[9] W. Gao, J. Peng, and Q. Zhong, A quantitative aspect of non-unique factorizations: the Narkiewicz constants III, Acta Arith. 158 (2013), 271 - 285.
[10] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1 -86.
[11] A. Geroldinger and R. Göbel, Half-factorial subsets in infinite abelian groups, Houston J. Math. 29 (2003), 841 - 858.
[12] A. Geroldinger and F. Halter-Koch, Congruence monoids, Acta Arith. 112 (2004), 263 - 296.
[13] _, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[14] A. Geroldinger and Y. ould Hamidoune, Zero-sumfree sequences in cyclic groups and some arithmetical application, J. Théor. Nombres Bordx. 14 (2002), 221 - 239.
[15] A. Geroldinger, F. Kainrath, and A. Reinhart, Arithmetic of seminormal weakly Krull monoids and domains, J. Algebra, to appear.
[16] A. Geroldinger and W. A. Schmid, A characterization of class groups via sets of lengths, arXiv:1503.04679
[17] appear, arXiv:1407.1967v2.
[18] A. Geroldinger and P. Yuan, The set of distances in Krull monoids, Bull. Lond. Math. Soc. 44 (2012), 1203 - 1208.
[19] B. Girard, Inverse zero-sum problems and algebraic invariants, Acta Arith. 135 (2008), 231 - 246.
[20] D.J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics, Springer, 2013.
[21] Y. ould Hamidoune, A structure theory for small sum subsets, Acta Arith. 147 (2011), 303 - 327.
[22] H. Kim and Y. S. Park, Krull domains of generalized power series, J. Algebra 237 (2001), 292 - 301.
[23] A. Plagne and W.A. Schmid, On congruence half-factorial Krull monoids with cyclic class group, submitted.
[24] _ On large half-factorial sets in elementary p-groups: maximal cardinality and structural characterization, Isr. J. Math. 145 (2005), $285-310$.
[25] , On the maximal cardinality of half-factorial sets in cyclic groups, Math. Ann. 333 (2005), $759-785$.
[26] W.A. Schmid, Arithmetic of block monoids, Math. Slovaca 54 (2004), 503 - 526.
[27] \qquad Differences in sets of lengths of Krull monoids with finite class group, J. Théor. Nombres Bordx. 17 (2005), 323-345.
[28] _, Half-factorial sets in finite abelian groups : a survey, Grazer Math. Ber. 348 (2005), 41 - 64.
[29] , Half-factorial sets in elementary p-groups, Far East J. Math. Sci. 22 (2006), 75 - 114.
[30] _, Periods of sets of lengths: a quantitative result and an associated inverse problem, Colloq. Math. 113 (2008), $33-53$.
[31] , Arithmetical characterization of class groups of the form $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$ via the system of sets of lengths, Abh. Math. Semin. Univ. Hamb. 79 (2009), $25-35$.
[32] _ A realization theorem for sets of lengths, J. Number Theory 129 (2009), 990 - 999.
[33] D. Smertnig, Sets of lengths in maximal orders in central simple algebras, J. Algebra 390 (2013), $1-43$.
[34] X. Zeng and P. Yuan, Two conjectures on an addition theorem, Acta Arith. 148 (2011), 395-411.
University of Graz, NAWI Graz, Institute for Mathematics and Scientific Computing, Heinrichstrasse 36, 8010 Graz, Austria

E-mail address: alfred.geroldinger@uni-graz.at, qinghai.zhong@uni-graz.at

[^0]: 2010 Mathematics Subject Classification. 11B30, 11R27, 13A05, 20 M 13.
 Key words and phrases. non-unique factorizations, sets of distances, Krull monoids, zero-sum sequences, cross numbers. This work was supported by the Austrian Science Fund FWF, Project Number M1641-N26.

