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Abstract. Let H be a Krull monoid with finite class group G such that every class contains a prime

divisor. For k ∈ N, let Uk(H) denote the set of all m ∈ N with the following property: There exist atoms
u1, . . . , uk, v1, . . . , vm ∈ H such that u1 · . . . · uk = v1 · . . . · vm. It is well-known that the sets Uk(H)

are finite intervals whose maxima ρk(H) = maxUk(H) depend only on G. If |G| ≤ 2, then ρk(H) = k

for every k ∈ N. Suppose that |G| ≥ 3. An elementary counting argument shows that ρ2k(H) = kD(G)

and kD(G) + 1 ≤ ρ2k+1(H) ≤ kD(G) + bD(G)
2
c where D(G) is the Davenport constant. In [11] it was

proved that for cyclic groups we have kD(G) + 1 = ρ2k+1(H) for every k ∈ N. In the present paper we

show that (under a mild condition on the Davenport constant) for every noncyclic group there exists

a k∗ ∈ N such that ρ2k+1(H) = kD(G) + bD(G)
2
c for every k ≥ k∗. This confirms a conjecture of A.

Geroldinger, D. Grynkiewicz, and P. Yuan in [13].

1. Introduction

Let H be an atomic monoid. If an element a ∈ H has a factorization a = u1 · . . . · uk into atoms
u1, . . . , uk ∈ H, then k is called the length of the factorization, and the set L(a) of all possible lengths
is called the set of lengths of a. For k ∈ N, let Uk(H) denote the set of all m ∈ N with the following
property: There exist atoms u1, . . . , uk, v1, . . . , vm ∈ H such that u1 · . . . ·uk = v1 · . . . ·vm. Thus Uk(H) is
the union of all sets of lengths containing k. The sets Uk(H) are one of the most investigated invariants
in factorization theory which were introduced by S.T. Chapman and W.W. Smith in Dedekind domains
([7]). Their suprema ρk(H) = supUk(H) were first studied in the 1980s for rings of integers in algebraic
number fields ([8, 19]). Since then these invariants have been studied in a variety of settings, including
numerical monoids, monoids of modules, noetherian and Krull domains (for a sample out of many we
refer to [10, 4, 3, 15, 1]).

In the present paper we focus on Krull monoids with class group G such that every class contains
a prime divisor. If |G| ≤ 2, then Uk(H) = {k} and if G is infinite, then Uk(H) = N≥2 for all k ∈ N.
Suppose that G is finite with |G| ≥ 3. This setting includes holomorphy rings in global fields. For more
examples we refer to [13], and a detailed exposition of Krull monoids can be found in [18, 14].

The unions Uk(H) ⊂ N are finite intervals, say Uk(H) = [λk(H), ρk(H)], whose minima λk(H) can be
expressed in terms of ρk(H) ([12, Chapter 3]). Elementary counting arguments (e.g. [14, Section 6.3])
show that, for every k ∈ N, we have ρ2k(H) = kD(G) and that

(1.1) kD(G) + 1 ≤ ρ2k+1(H) ≤ kD(G) +

⌊
D(G)

2

⌋
.

Based on the Savchev-Chen Structure Theorem [17, Section 11.3] (resp. on a related result on the index
of sequences) Gao and Geroldinger [11] showed that for every cyclic group G and every k ∈ N we have
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ρ2k+1(H) = kD(G) + 1. In [13, Conjecture 3.3], the authors conjectured that for every noncyclic group
G there exists a k∗ ∈ N such that

ρ2k+1(H) = kD(G) +

⌊
D(G)

2

⌋
for every k ≥ k∗ .

We confirm this conjecture for wide classes of groups. For a precise formulation of our main result we
need one more definition. Suppose that G ∼= Cn1

⊕ . . .⊕Cnr
where r, n1, . . . , nr ∈ N with 1 < n1 | . . . |nr,

and set

D∗(G) = 1 +

r∑
i=1

(ni − 1) .

It is well-known that D∗(G) ≤ D(G). Equality holds for p-groups, groups of rank at most two, and others
(see [12, Corollary 4.2.13], [5] for recent progress), but it does not hold in general ([16]). Here is our main
result.

Theorem 1.1. Let H be a Krull monoid with finite noncyclic class group G such that every class contains
a prime divisor. Then there exists a k∗ ∈ N such that

ρ2k+1(H) ≥ (k − k∗)D(G) + k∗D∗(G) +

⌊
D∗(G)

2

⌋
for every k ≥ k∗ .

In particular, if D(G) = D∗(G), then

ρ2k+1(H) = kD(G) +

⌊
D(G)

2

⌋
for every k ≥ k∗ .

In [13], Geroldinger, Grynkiewicz, and Yuan gave a list of groups for which the above result holds with
k∗ = 1. Furthermore, they showed that if G ∼= Cm ⊕ Cmn with n ≥ 1 and m ≥ 2, then the result holds
with k∗ = 1 if and only if n = 1 or m = n = 2. It remains a challenging task to determine, for a given
group G, the smallest possible k∗ ∈ N for which the above statement holds.

It is well-known that the invariants ρk(H) can be studied in an associated monoid of zero-sum sequences
and this allows to use methods from Additive Combinatorics (see Lemma 2.1). In Section 2 we fix our
notation and terminology. At the beginning of Section 3 we introduce our main concept in Definition 3.1
and after that we discuss the strategy of the proof.

2. Preliminaries

Let N denote the set of positive integers and N0 = N ∪ {0}. For real numbers a, b ∈ R, we denote
by [a, b] = {x ∈ Z | a ≤ x ≤ b} the discrete interval. For n ∈ N we denote by Cn a cyclic group of
order n. Let G be a finite abelian group. Then G ∼= Cn1 ⊕ . . .⊕ Cnr where r ∈ N0, n1, . . . , nr ∈ N with
1 < n1 | . . . |nr. We call r = r(G) the rank of G (thus r(G) is the maximum of the p-ranks of G), and a
tuple (e1, . . . , es) of nonzero elements of G is said to be a basis of G if G = 〈e1〉⊕ . . .⊕〈es〉. We start with
a couple of remarks on abstract monoids, continue with the monoid of zero-sum sequences, and then we
deal with Krull monoids.

By a monoid, we mean a commutative semigroup with identity which satisfies the cancellation law
(that is, if a, b, c are elements of the monoid with ab = ac, then b = c follows). The multiplicative
semigroup of non-zero elements of an integral domain is a monoid. Let H be a monoid. We denote by
H× the group of invertible elements of H and by A(H) the set of atoms (irreducible elements) of H. If
a = u1 · . . . · uk, where k ∈ N and u1, . . . , uk ∈ A(H), then k is called the length of the factorization and
L(a) = {k ∈ N | a has a factorization of length k} ⊆ N is the set of lengths of a. For convenience, we set
L(a) = {0} if a ∈ H×. Furthermore, we denote by

L(H) = {L(a) | a ∈ H} the system of sets of lengths of H .
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Let k ∈ N and suppose that H 6= H×. Then

Uk(H) =
⋃

a∈H, k∈L(a)

L(a)

is the union of all sets of lengths containing k. Thus, Uk(H) is the set of all m ∈ N such that there are
atoms u1, . . . , uk, v1, . . . , vm with u1 · . . . · uk = v1 · . . . · vm, and we define ρk(H) = sup Uk(H). Sets of
lengths are the best investigated invariants in Factorization Theory (for an overview we refer to [14, 6]).

Let G be an additively written finite abelian group. By a sequence over G, we mean a finite sequence
of terms from G where repetition is allowed and the order is disregarded. As usual (see [14, 17]), we
consider sequences as elements of the free abelian monoid F(G) with basis G. A sequence S over G will
be written in the form

S = g1 · . . . · gl =
∏
g∈G

gvg(S) ∈ F(G),

and we call

|S| = l =
∑
g∈G vg(S) ∈ N0 the length of S,

supp(S) = {g ∈ G | vg(S) > 0} ⊆ G the support of S, and

σ(S) =
∑l
i=1 gi =

∑
g∈G vg(S)g ∈ G the sum of S.

We say that S is a zero-sum sequence if σ(S) = 0, and clearly the set of zero-sum sequences

B(G) = {S ∈ F(G) | σ(S) = 0} ⊂ F(G)

is a submonoid of F(G), called the monoid of zero-sum sequences over G. Clearly, an element A ∈ B(G)
is irreducible if and only if it is a minimal zero-sum sequence, and we denote by A(G) := A

(
B(G)

)
the

set of atoms of B(G). This set is finite, and the Davenport constant D(G) of G is the maximal length of
a minimal zero-sum sequence over G, thus

D(G) = max
{
|U |

∣∣ U ∈ A(G)
}
∈ N .

In other words, D(G) is the smallest integer ` such that every sequence S over G of length |S| ≥ ` has a
nontrivial zero-sum subsequence.

A monoid H is a Krull monoid if one of the following equivalent conditions is satisfied:

(a) H is completely integrally closed and satisfies the ascending chain condition on divisorial ideals.
(b) There is a free abelian monoid F and a homomorphism ϕ : H → F with the following property: if

a, b ∈ H and ϕ(a) divides ϕ(b) in F , then a divides b in H.

We refer to the monographs [18, 14] for a detailed exposition of Krull monoids and to the already
mentioned paper [13]. We just mention that a domain R is a Krull domain if and only if its monoid of
nonzero elements is a Krull monoid, and for monoids of modules which are Krull we refer to [2, 1, 9].
Property (a) easily shows that every integrally closed noetherian domain is a Krull domain. Since the
embedding B(G) ↪→ F(G) satisfies Property (b), we infer that B(G) is a Krull monoid. It is easy to
verify that the class group of B(G) is isomorphic to G and that every class contains a prime divisor.
Furthermore, B(G) plays a universal role in the study of the arithmetic of general Krull monoids. In
particular, the system of sets of lengths of a Krull monoid H with class group G, where each class contains
a prime divisor, coincides with the system of sets of lengths of B(G). We give a precise formulation of
this well-known fact (for progress in this directions see [13, Proposition 2.2]).

Proposition 2.1 ([14], Theorem 3.4.10). Let H be a Krull monoid with class group G such that every
class contains a prime divisor. Then there is a transfer homomorphism β : H → B(G) which implies
that, for every k ∈ N,

Uk(H) = Uk(B(G)) and ρk(H) = ρk(B(G)) .
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Thus the invariants ρk(H) can be studied in the monoid of zero-sum sequences B(G). As usual, we
set Uk(G) = Uk(B(G)) and ρk(G) = ρk(B(G)).

3. Proof of Theorem 1.1

Throughout this section, let G be a finite abelian group. If |G| ≤ 2, then B(G) is factorial whence
ρk(G) = k for every k ∈ N. Clearly, D∗(G) = 3 if and only if G is cyclic of order three or isomorphic to
C2 ⊕ C2. In this case, Inequality (1.1) is an equality, and in particular Theorem 1.1 holds with k∗ = 1.
Thus for the remainder of this section we suppose that D∗(G) ≥ 4, and this implies that |G| ≥ 4.

We introduce the main concept of the present paper.

Definition 3.1. Let A ∈ B(G).

1. We say that A is pair-nice (with respect to G) if there is a factorization A = U1 · . . . · U2k, k ∈ N
with the following properties
(a) U1, . . . , U2k ∈ A(G) with |U1| = . . . = |U2k| = D∗(G);
(b) For all i ∈ [1, 2k], there is a gi ∈ supp(Ui) such that g1 · . . . ·g2k is a product of length 2 atoms.

2. We say that A is nice (with respect to G) if there is a factorization A = U1 · . . . · U2k+1, k ∈ N
with the following properties
(a) U1, . . . , U2k+1 ∈ A(G) with |U1| = . . . = |U2k+1| = D∗(G);
(b) For all i ∈ [1, 2k + 1], there is a gi ∈ supp(Ui) such that one of the following holds:

(i) D∗(G) is odd, A(g1 · . . . · g2k+1)−1 is a product of length 2 atoms, and g1 · . . . · g2k+1 =
W0·W1·. . .·Wk−1, where |W0| = 3, |W1| = . . . = |Wk−1| = 2, andW0, . . . ,Wk−1 ∈ A(G).

(ii) D∗(G) is even and there exists a g2k+2 ∈ supp (A(g1 · . . . · g2k+1)
−1

) such that A(g1 ·
. . . · g2k+2)−1 and g1 · . . . · g2k+2 are both products of length 2 atoms.

Suppose there exists a nice A ∈ B(G), and let all notation be as in the above definition. Then

{2k + 1, kD∗(G) + bD
∗(G)

2
c} ⊆ L(A) and hence ρ2k+1(G) ≥ kD∗(G) + bD

∗(G)

2
c .

Thus, up to a small calculation (which will be done in the actual proof of Theorem 1.1), the assertion
of the theorem follows. Therefore the main task of the paper is to find nice elements. We do this for
groups of rank two (Lemma 3.3), for groups of rank three (Lemma 3.4), and then we put all together in
Lemma 3.5. Note, if G is cyclic of order greater than or equal to four, then there are no nice elements.
Furthermore, if A is nice or pair-nice, then 0 /∈ supp(A).

Our first lemma gathers some basic facts which we will use without further mention.

Lemma 3.2. Let E,E1 be pair-nice zero-sum sequences (with respect to G). Suppose that X1, X2, X3 ∈
A(G) are of length D∗(G). Then

1. E · E1 is pair-nice (with respect to G);
2. If D∗(G) is even and E ·X1 is a product of length 2 atoms, then E ·X1 is nice (with respect to G);
3. If D∗(G) is odd and there exists ai ∈ supp(Xi) for each i ∈ [1, 3] such that a1a2a3 ∈ A(G) and
EX1X2X3(a1a2a3)−1 is a product of length 2 atoms, then EX1X2X3 is nice (with respect to G).

Proof. Since E is pair-nice, we assume that E = U1 · . . . · U2k, where k ∈ N and U1, . . . , U2k ∈ A(G) are
of length D∗(G), and there exists gi ∈ supp(Ui) for each i ∈ [1, 2k] such that g1 · . . . · g2k is a product of
length 2 atoms.

1. It is obvious by definition.
2. Since E ·X1 and g1 ·. . .·g2k are both products of length 2 atoms, we obtain that E(g1 ·. . .·g2k)−1X1

is a product of length 2 atoms. Therefore there exist x ∈ supp(X1) and y ∈ supp(E(g1 · . . . ·g2k)−1)
such that xy ∈ A(G). It follows that g1 · . . . ·g2k ·xy and EX1(g1 · . . . ·g2k ·xy)−1 are both products
of length 2 atoms which implies that E ·X1 is nice by D∗(G) is even.
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3. Since EX1X2X3(a1a2a3)−1 and g1·. . .·g2k are product of length 2 atoms, we have that EX1X2X3(g1·
. . . · g2ka1a2a3)−1 is a product of length 2 atoms. Moreover, a1a2a3 is an atom implies that
EX1X2X3 is nice by D∗(G) is odd.

�

Lemma 3.3. Let G = Cn ⊕ Cmn with n > 1 and m ∈ N. Then there exist a k∗ ∈ N and atoms
W1, . . . ,W2k∗+1 ∈ A(G) of length D∗(G) such that W1 · . . . ·W2k∗+1 is nice.

Proof. Let (e1, e2) be a basis of G with ord(e1) = n and ord(e2) = mn. Then D∗(G) = mn+ n− 1.
Now set

Ui = en−11

(
(−1)i+1e2 + (i+ 1)e1

) (
(−1)i+1e2 − ie1

) (
(−1)i+1e2

)mn−2
,

Vj = emn−12

(
(−1)j+1e1 + (j + 1)e2

) (
(−1)j+1e1 − je2

) (
(−1)j+1e1

)n−2
,

Wj = (e1 + e2)mn−1
(
(−1)j+1e1 + (j + 1)(e1 + e2)

) (
(−1)j+1e1 − j(e1 + e2)

) (
(−1)j+1e1

)n−2
,

where i ∈ [0, n− 1] and j ∈ [0,mn− 1]. Then |Ui| = |Vj | = |Wj | = D∗(G) and Ui, Vj ,Wj ∈ A(G) for all
i ∈ [0, n− 1], j ∈ [0,mn− 1].

We distinguish the following three cases.

Case 1: n is odd and m is even.
Let n = 2α+ 1 with α ≥ 1. Then m ≥ 2 and D∗(G) is even.
Since mn is even, let E2 = V0 · . . . · Vmn−1 and hence E2 is pair-nice. By calculation, we obtain that

E2 e
−(mn−1)mn
2 is a product of length 2 atoms.

Let E3 = V0 · . . . ·V(m−1)n−1W(m−1)n · . . . ·Wmn−1 and hence E3 is pair-nice. By calculation, we obtain

that E3

(
e
(mn−1)(m−1)n
2 (e1 + e2)(mn−1)n

)−1
is a product of length 2 atoms.

Replacing the basis (e1, e2) with (−e1, e2), we can construct a zero-sum sequence E′3 similar with E3

such that E′3 is pair-nice and E′3

(
e
(mn−1)(m−1)n
2 (−e1 + e2)(mn−1)n

)−1
is a product of length 2 atoms.

Let X = emn−12 (e1 + e2)α+1(e1 − e2)α and Y = emn−12 (e2 − e1)(−e1)n−1. Then X and Y are atoms of
length D∗(G). Since XY and X(−Y ) are pair-nice, we obtain that

E′ = E2α
2 Eα+1

3 (−E′3)α((−X)Y )
(mn−1)n−1

2 ((−X)(−Y ))
(mn−1)n−1

2 is pair-nice .

By calculation we have that (−X)E′ is a product of length 2 atoms. It follows that (−X)E′ is nice
by Lemma 3.2.2.

Case 2: n is odd and m is odd.
Then D∗(G) is odd. Since n is odd, let O1 = U0 · . . . · Un−1 and hence by calculation, we can obtain

that O1

(
e
n(n−1)
1 (−e2)mn

)−1
is a product of length 2 atoms.

Since mn is odd, let O2 = V0 · . . . · Vmn−1 and hence by calculation, O2

(
e
(mn−1)mn
2 (−e1)n

)−1
is a

product of length 2 atoms.
Replacing the basis (e1, e2) with (−e1, e2), we can construct a zero-sum sequence O′1 similarly with

O1 such that O′1
(
(−e1)n(n−1)(−e2)mn

)−1
is a product of length 2 atoms. By the constructions of O1

and O′1, we can obtain that O1O
′
1 is pair-nice and O1O

′
1 (−e2)

−2mn
is a product of length 2 atoms. We

denote O1O
′
1 by E.

Let X = (−e1)n−1emn−12 (e2 − e1) and hence X is an atom of length D∗(G). Therefore we let O =

On−22 O1XE
(mn−1)(n−2)

2 and hence O ((e2 − e1)e1(−e2))
−1

is a product of length 2 atoms.
Since O2Ui is pair-nice for each i ∈ [0, n− 1], we obtain that On−22 O1(U0U1)−1 is pair-nice and hence

O(U0U1X)−1 is pair-nice.
By (e2 − e1) ∈ supp(X), −e2 ∈ supp(U0), and e1 ∈ supp(U1), Lemma 3.2.3 implies that O is nice.
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Case 3: n is even.
Then D∗(G) is odd. Since n is even, let E1 = U0 · . . . ·Un−1 and hence E1 is pair-nice and E1e

−n(n−1)
1

is a product of length 2 atoms. Let E2 = V0 · . . . · Vmn−1 and hence E2 is pair-nice and E2e
−(mn−1)mn
2 is

a product of length 2 atoms.
Let

X1 =en−11 emn−12 (e1 + e2) ,

X2 =emn−12 e1(e1 + e2)
n
2 (e1 − e2)

n
2−1 ,

Y =en−11 (−e2)mn−1(e1 − e2) .

Then X1, X2, and Y are atoms of length D∗(G). Since X1Y and X1(−Y ) are both pair-nice, we obtain
that (X1Y )

mn
2 (X1(−Y ))

mn
2 (−E1)m(−E2) is pair-nice and

(X1Y )
mn
2 (X1(−Y ))

mn
2 (−E1)m(−E2)(e1 + e2)−mn is product of length 2 atoms .

Replacing the basis (e1, e2) with (e1, e2 − e1), we can construct a zero-sum sequence E similarly such
that E is pair-nice and Ee−mn2 is a product of length 2 atoms.

Then let E′ = (X1Y )
n
2 (X1(−Y ))

n
2 (−E1)(−E)n and hence E′ is pair-nice and

E′ ((e1 + e2)n(−e2)n)
−1

is a product of length 2 atoms .

Similarly with E′, if we replace the basis (e1, e2) with (e1,−e2), we can construct a zero-sum sequence
E′′ such that E′′ is pair-nice and

E′′ ((e1 − e2)nen2 )
−1

is a product of length 2 atoms .

Since X2Y and X2(−Y ) are both pair-nice, we let E′′′ = (X2Y )
n
2 (X2(−Y ))

n
2 (−E)n(−E′)n

2 (−E′′)n
2−1

and hence E′′′ is pair-nice and E′′′e−n1 is a product of length 2 atoms. It follows that (−E)(−E′′′) is
pair-nice, (e1 + e2) ∈ supp(X1), −e2 ∈ supp(Y ), −e1 ∈ supp(−Y ), and

X1Y (−Y )(−E)(−E′′′) ((−e2)(−e1)(e1 + e2))
−1

is a product of length 2 atoms

which implies that X1Y (−Y )(−E)(−E′′′) is nice by Lemma 3.2.3. �

Lemma 3.4. Let G = Cn1 ⊕ Cn2 ⊕ Cn3 with 1 < n1 |n2 |n3. Then there exist a k∗ ∈ N and atoms
W1, . . . ,W2k∗+1 ∈ A(G) of length D∗(G) such that W1 · . . . ·W2k∗+1 is nice.

Proof. Let (e1, e2, e3) be a basis of G with ord(e1) = n1, ord(e2) = n2, and ord(e3) = n3. Then
D∗(G) = n1 + n2 + n3 − 2. Denote

X1 = en1−1
1 en2−1

2 (−e3)n3−2(e1 − e3)(e2 − e3),

X2 = en1−1
1 (−e2)n2−2en3−1

3 (e1 − e2)(e3 − e2),

X3 = (−e1)n1−2en2−1
2 en3−1

3 (−e1 + e2)(−e1 + e3).

It is easy to see that Xi is an atom of length D∗(G) for each i ∈ [1, 3]. Thus

X1X2X3 (en1
1 en2

2 en3
3 )
−1

is a product of length 2 atoms .

If n1 = n2 = n3 = 2, we have X1X2X3 is a product of length 2 atoms and hence X1X2X3 is nice. Thus
we can assume n3 ≥ 4.

Denote

X ′1 = en1−1
1 (−e2)n2−1en3−2

3 (e1 + e3)(−e2 + e3),

X ′2 = en1−1
1 en2−2

2 (−e3)n3−1(e1 + e2)(−e3 + e2),

X ′3 = (−e1)n1−2(−e2)n2−1(−e3)n3−1(−e1 − e2)(−e1 − e3).
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Thus E1 = X1X
′
1X2X

′
2X3X

′
3 is pair-nice and E1e

−2n1
1 is a product of length 2 atoms. Similarly, we can

construct pair-nice zero-sum sequences E2 and E3 such that E2e
−2n2
2 and E3e

−2n3
3 are both products of

length 2 atoms.
Set

Ui =en1−1
1

(
(−1)i+1e3 + (i+ 1)e1

) (
(−1)i+1e3 − ie1

) (
(−1)i+1e3

)n3−3 (
(−1)i+1(e2 + e3)

) (
(−1)i+1e2

)n2−1
,

Vj =en2−1
2

(
(−1)j+1e3 + (j + 1)e2

) (
(−1)j+1e3 − je2

) (
(−1)j+1e3

)n3−3 (
(−1)j+1(e1 + e3)

) (
(−1)j+1e1

)n1−1
,

Wl =


en3−1
3

(
(−1)l+1e2 + (l + 1)e3

) (
(−1)l+1e2 − le3

) (
(−1)l+1e2

)n2−3 (
(−1)l+1(e1 + e2)

) (
(−1)l+1e1

)n1−1
,

if n2 ≥ 3 ,

en3−1
3 (e1 + le2 + (l + 1)e3) (e1 + (l + 1)e2 − le3) e2 , if n1 = n2 = 2 ,

where i ∈ [0, n1 − 1], j ∈ [0, n2 − 1], and l ∈ [0, n3 − 1]. It is easy to see that, Vi, Uj , Wl are all atoms of
length D∗(G), where i ∈ [0, n1 − 1], j ∈ [0, n2 − 1], and l ∈ [0, n3 − 1].

Now we distinguish the following four cases.

Case 1: n1 is even.
Then D∗(G) is even since 1 < n1 | n2 | n3.
Since n1 is even, we let E′1 = U0 · . . . ·Un1−1, E′2 = V0 · . . . ·Vn2−1, and E′3 = W0 · . . . ·Wn3−1 and hence

E′1, E′2, and E′3 are pair-nice. Moreover E′1e
−n1(n1−1)
1 , E′2e

−n2(n2−1)
2 , and E′3e

−n3(n3−1)
3 are products of

length 2 atoms.
Therefore let E4 = E′1(−E1)

n1
2 −1, E5 = E′2(−E2)

n2
2 −1, and E6 = E′3(−E3)

n3
2 −1, and hence E4, E5, E6

are pair-nice and E4e
−n1
1 , E5e

−n2
2 , and E6e

−n3
3 are products of length 2 atoms.

It follows thatO = E4E5E6(−X1)(−X2)(−X3) is a product of length 2 atoms and E4E5E6(−X1)(−X2)
is pair-nice. Then O is nice by Lemma 3.2.2.

Case 2: n1 is odd, n2 is even.
Then D∗(G) is odd. Since n1 is odd, we let O1 = U0 · . . . · Un1−1 and hence O1U

−1
0 is pair-nice and

O1

(
e
(n1−1)n1

1 (−e3)n3−1(−e2 − e3)(−e2)n2−1
)−1

is a product of length 2 atoms .

Since n2 is even, we let E′2 = V0 · . . . · Vn2−1 and E′3 = W0 · . . . ·Wn3−1 and hence E′2 and E′3 are

pair-nice. Moreover E′2e
−n2(n2−1)
2 and E′3e

−n3(n3−1)
3 are both products of length 2 atoms.

Therefore let E5 = E′2(−E2)
n2
2 −1 and E6 = E′3(−E3)

n3
2 −1, and hence E5, E6 are pair-nice and E5e

−n2
2

and E6e
−n3
3 are both products of length 2 atoms.

Let O = (−E1)
n1−1

2 E5E6O1X1(−X1) and hence O (e2e3(−e2 − e3))
−1

is a product of length 2 atoms.

Since (−e2 − e3) ∈ supp(U0), e2 ∈ supp(X1), e3 ∈ supp(−X1), and O (U0X1(−X1))
−1

is pair-nice, we
obtain that O is nice by Lemma 3.2.3.

Case 3: n1 is odd, n2 is odd, and n3 is even.
Then D∗(G) is even. Since n1 is odd, we let O1 = U0 · . . . · Un1−1 and hence O1U

−1
0 is pair-nice and

O1

(
e
(n1−1)n1

1 (−e3)n3−1(−e2 − e3)(−e2)n2−1
)−1

is a product of length 2 atoms .

Since n3 is even, we let E′3 = W0 · . . . ·Wn3−1 and hence E′3 is pair-nice and E′3e
−(n3−1)n3

3 is a product

of length 2 atoms. Therefore E6 = E′3(−E3)
n3
2 −1 is pair-nice and E6e

−n3
3 is a product of length 2 atoms.

Since n2 ≥ 3, we let

W ′l =(e2 + e3)n3−1
(
(−1)l+1e2 + (l + 1)(e2 + e3)

) (
(−1)l+1e2 − l(e2 + e3)

) (
(−1)l+1e2

)n2−3 ·(
(−1)l+1(e1 + e2)

) (
(−1)l+1e1

)n1−1
,

where l ∈ [0, n3 − 1]. Thus W ′l is an atom of length D∗(G) for each l ∈ [0, n3 − 1].
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Let E7 = (W0W1) · . . . · (Wn3−n2−1W
′
n3−n2

) · . . . · (W ′n3−2W
′
n3−1) and hence E7 is pair-nice and

E7

(
e
(n3−1)(n3−n2)
3 (e2 + e3)(n3−1)n2

)−1
is a product of length 2 atoms .

Therefore let O′ = O
(n3−1)n2

1 E7(−E1)
(n3−1)n2(n1−1)n1

2n1 E
(n3−1)n2(n2−1)

2n2
2 E

(n3−1)n3(n2−1)
n3

6 and hence O′ is a

product of length 2 atoms and O′(U0)−(n3−1)n2 is pair-nice.
Let Y = en1−1

1 en2−1
2 en3−1

3 (e1+e2+e3) and hence Y is an atom of length D∗(G). Since Y U0 and (−Y )U0

are both pair-nice, we obtain that U
(n3−1)n2−1
0 (Y (−Y ))

(n3−1)n2−1
2 = (U0Y )

(n3−1)n2−1
2 (U0(−Y ))

(n3−1)n2−1
2

is pair-nice.

It follows that O = O′(Y (−Y ))
(n3−1)n2−1

2 is a product of length 2 atoms and

OU−10 = O′(U0)−(n3−1)n2 · U (n3−1)n2−1
0 (Y (−Y ))

(n3−1)n2−1
2 is pair-nice.

Then O is nice by Lemma 3.2.2.

Case 4: n1 is odd, n2 is odd, and n3 is odd.
Then D∗(G) is odd. Since n3 is odd, we let O3 = W0 · . . . ·Wn3−1 and hence O3W

−1
0 is pair-nice and

O3

(
e
(n3−1)n3

3 (−e2)n2−1(−e1 − e2)(−e1)n1−1
)−1

is a product of length 2 atoms ,

and hence

O3(−E3)
n3−1

2 X1X2X3

(
en3
3 e1e2(−e1 − e2)

)−1
is a product of length 2 atoms .

By (W0X1)(X2X3) is pair-nice, we have that O3(−E3)
n3−1

2 X1X2X3 is pair-nice.
Similarly, if we replace the basis (e1, e2, e3) with (−e1,−e2, e1 + e2 + e3), we can construct a zero-sum

sequence E such that E is pair-nice and

E ((e1 + e2 + e3)n3(−e1)(−e2)(e1 + e2))
−1

is a product of length 2 atoms .

Let

Y =en1−1
1 en2−1

2 en3−1
3 (e1 + e2 + e3) ,

Y1 =en1−1
1 (−e1 − e2)n2−1(−e3)n3−1(−e2 − e3) ,

and hence Y and Y1 are atoms of length D∗(G).
Therefore let

O4 =Y n3(−E1)
(n1−1)n3

2n1 (−E2)
(n2−1)n3

2n2 (−E3)
(n3−1)

2 ,

O =O4(Y1(−Y1))
n3−1

2 (−E) .

Then O4(e1 + e2 + e3)−n3 is a product of length 2 atoms and hence O (e1e2(−e1 − e2))
−1

is a product of
length 2 atoms. By calculation, we obtain that

O(Y 2Y1)−1 = O4(Y )−n3 · (Y Y1)
n3−3

2 · (Y (−Y1))
n3−1

2 · (−E) is pair-nice,

Therefore e1 ∈ supp(Y ), e2 ∈ supp(Y ), and −e1 − e2 ∈ supp(Y1) imply that O is nice by Lemma 3.2.3.
�

Lemma 3.5. Let G = G1 ⊕ G2, where G1, G2 ⊂ G are noncyclic subgroups of G satisfying r(G) =
r(G1) + r(G2). Suppose that there exist k ∈ N and atoms U1, . . . , U2k+1 ∈ A(G1) of length D∗(G1) and
atoms V1, . . . , V2k+1 ∈ A(G2) of length D∗(G2) such that U1 · . . . · U2k+1 is nice (with respect to G1) and
V1 · . . . ·V2k+1 is nice (with respect to G2). Then there exist atoms W1, . . . ,W2k+1 ∈ A(G) of length D∗(G)
such that W1 · . . . ·W2k+1 is nice (with respect to G).
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Proof. Without loss of generality, we can distinguish the following three cases.

Case 1. D∗(G1) and D∗(G2) are odd.
Since U1 · . . . ·U2k+1 is nice (with respect to G1), without loss of generality, we can assume that there

exist gi ∈ supp(Ui) for each i ∈ [1, 2k + 1] such that σ(g1g2g3) = 0, g2j = −g2j+1 for each j ∈ [2, k], and
U1 · . . . · U2k+1(g1 · . . . · g2k+1)−1 is a product of length 2 atoms.

With the same reason, we can assume that there exist hi ∈ supp(Vi) for each i ∈ [1, 2k + 1] such that
σ(h1h2h3) = 0, h2j = −h2j+1 for each j ∈ [2, k], and V1 · . . . · V2k+1(h1 · . . . · h2k+1)−1 is a product of
length 2 atoms.

Let Wi = Uig
−1
i · Vih−1i · (gi + hi) for all i ∈ [1, 2k + 1]. Then Wi is an atom over G of length

D∗(G1) + D∗(G2)− 1 = D∗(G), and

(g1 + h1) · . . . · (g2k+1 + h2k+1) = Z0 · Z1 · . . . · Zk−1
where Z0 = (g1 + h1)(g2 + h2)(g3 + h3) ∈ A(G) and Zi = (g2i+2 + h2i+2)(g2i+3 + h2i+3) ∈ A(G) for each
i ∈ [1, k − 1],

W1·. . .·W2k+1

(
(g1+h1)·. . .·(g2k+1+h2k+1)

)−1
= U1·. . .·U2k+1(g1·. . .·g2k+1)−1·V1·. . .·V2k+1(h1·. . .·h2k+1)−1

is a product of atoms of length 2.
It follows that W1 · . . . ·W2k+1 is nice (with respect to G) by D∗(G) is odd.

Case 2. D∗(G1) and D∗(G2) are even.
Since U1 · . . . ·U2k+1 is nice (with respect to G1), without loss of generality, we can assume that there

exist gi ∈ supp(Ui) for each i ∈ [1, 2k + 1] and g2k+2 ∈ supp(U1g
−1
1 ) such that g1 = −g2, g2k+2 = −g3,

and g2j = −g2j+1 for each j ∈ [2, k] and U1 · . . . · U2k+1(g1 · . . . · g2k+2)−1 is a product of length 2 atoms.
With the same reason, we can assume that there exist hi ∈ supp(Vi) for each i ∈ [1, 2k + 1] and

h2k+2 ∈ supp(V1h
−1
1 ) such that h1 = −h2, h2k+2 = −h3, and h2j = −h2j+1 for each j ∈ [2, k] and

V1 · . . . · V2k+1(h1 · . . . · h2k+2)−1 is a product of atoms of length 2.
Let Wi = Uig

−1
i · Vih

−1
i · (gi + hi) for all i ∈ [4, 2k + 1] and

W1 = U1(g1g2k+2)−1 · V2h−12 · (g1 + h2) · g2k+2 ,

W2 = U2g
−1
2 · V1(h1h2k+2)−1 · (g2 + h1) · h2k+2 ,

W3 = U3g
−1
3 · V3h

−1
3 · (g3 + h3) .

Then Wi is an atom over G of length D∗(G1) + D∗(G2)− 1 = D∗(G) for all i ∈ [1, 2k + 1]. It follows
that

g2k+2 · h2k+2 · (g3 + h3) · (g4 + h4) . . . · (g2k+1 + h2k+1) = Z0 · Z1 · . . . · Zk−1 ,
where Z0 = g2k+2h2k+2(g3 + h3) ∈ A(G) and Zi = (g2i+2 + h2i+2)(g2i+3 + h2i+3) ∈ A(G) for each
i ∈ [1, k − 1].

Moreover

W1 · . . . ·W2k+1

(
g2k+2 · h2k+2 · (g3 + h3) · (g4 + h4) · . . . · (g2k+1 + h2k+1)

)−1
=U1 · . . . · U2k+1(g1 · . . . · g2k+2)−1 · V1 · . . . · V2k+1(h1 · . . . · h2k+2)−1 · (g1 + h2)(g2 + h1)

is a product of atoms of length 2.
Thus W1 · . . . ·W2k+1 is nice (with respect to G) by D∗(G) is odd.

Case 3. D∗(G1) is even and D∗(G2) is odd.
Since U1 · . . . · U2k+1 is nice (with respect to G1) and D∗(G1) is even, without loss of generality, we

can assume that there exist gi ∈ supp(Ui) for each i ∈ [1, 2k + 1] and g2k+2 ∈ supp(U1g
−1
1 ) such that

g1 = −g2, g2k+2 = −g3, and g2j = −g2j+1 for each j ∈ [2, k] and U1 · . . . · U2k+1(g1 · . . . · g2k+2)−1 is a
product of length 2 atoms.
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Since V1 · . . . · V2k+1 is nice (with respect to G2) and D∗(G2) is odd, without loss of generality, we can
assume that there exist hi ∈ supp(Vi) for each i ∈ [1, 2k + 1] such that σ(h1h2h3) = 0 and h2j = −h2j+1

for each j ∈ [2, k] and V1 · . . . · V2k+1(h1 · . . . · h2k+1)−1 is a product of length 2 atoms.
Let Wi = Uig

−1
i · Vih

−1
i · (gi + hi) for all i ∈ [4, 2k + 1] and

W1 = U1(g1g2k+2)−1 · V1h−11 · (g1 − h2) · (g2k+2 + h1 + h2) ,

W2 = U2g
−1
2 · V2h

−1
2 · (g2 + h2) ,

W3 = U3g
−1
3 · V3h

−1
3 · (g3 + h3) .

Then Wi is an atom over G of length D∗(G1) + D∗(G2)− 1 = D∗(G) for all i ∈ [1, 2k + 1]. It follows
that

(g1 − h2) · (g2k+2 + h1 + h2) · (g2 + h2) · (g3 + h3) · (g4 + h4) · . . . · (g2k+1 + h2k+1)

is a product of length 2 atoms and

W1 · . . . ·W2k+1

(
(g1 − h2) · (g2k+2 + h1 + h2) · (g2 + h2) · (g3 + h3) · (g4 + h4) · . . . · (g2k+1 + h2k+1)

)−1
=U1 · . . . · U2k+1(g1 · . . . · g2k+2)−1 · V1 · . . . · V2k+1(h1 · . . . · h2k+1)−1

is a product of length 2 atoms.
Thus W1 · . . . ·W2k+1 is nice (with respect to G) by D∗(G) is even.

�

Proof of Theorem 1.1. Let H be a Krull monoid with finite noncyclic class group G such that every
class contains a prime divisor. By Proposition 2.1 we have ρk(H) = ρk(G) for every k ∈ N. If G ∼= C2⊕C2,
then D∗(G) = 3 and the assertion of the theorem follows from Inequality 1.1 with k∗ = 1. Suppose that
D∗(G) ≥ 4. We start with the following assertion.
Assertion. There exist a k∗ ∈ N and atoms W1, . . . ,W2k∗+1 over G of length D∗(G) such that W1 · . . . ·
W2k∗+1 is nice (with respect to G).

Proof of Assertion. We proceed by induction on r(G).
If r(G) = 2 or 3, then the Assertion follows by Lemma 3.3 and 3.4. Assume that r(G) ≥ 4 and suppose

that the Assertion is true for all groups of smaller rank. Let G = G1 ⊕ G2 with r(G1) = r − 2 and
r(G2) = 2. Then by our assumption, there exist a k1 ∈ N and atoms U1, . . . , U2k1+1 over G1 of length
D∗(G1) such that U1 · . . . · U2k1+1 is nice (with respect to G1). By Lemma 3.3, there exist a k2 ∈ N and
atoms V1, . . . , V2k2+1 over G2 of length D∗(G2) such that V1 · . . . · V2k2+1 is nice (with respect to G2).

Let k∗ = max(k1, k2). Without loss of generality, we can assume that k1 = k∗ ≥ k2. Thus k1 − k2
is even and hence V1 · . . . · V2k2+1 · (V1(−V1))k1−k2 is nice (with respect to G2). Therefore the Assertion
follows by Lemma 3.5. �(Proof of Assertion)

By the very definition of nice elements (and outlined in detail after Definition 3.1), it follows that

(3.1) ρ2k∗+1(G) ≥ k∗D∗(G) +

⌊
D∗(G)

2

⌋
.

Let k ≥ k∗. Since ρ2(k−k∗)(G) = (k − k∗)D(G) and U2(k−k∗)(G) + U2k∗+1(G) ⊆ U2k+1(G), it follows that

ρ2k+1(G) ≥ ρ2(k−k∗)(G) + ρ2k∗+1(G) ≥ (k − k∗)D(G) + k∗D∗(G) +

⌊
D∗(G)

2

⌋
.

If D(G) = D∗(G), then the assertion follows from Inequality 1.1. �
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