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1. Introduction. Let K be an algebraic number field, OK its ring of
integers and G its ideal class group. For a non-zero element a ∈ OK let Z(a)
denote the set of all (essentially distinct) factorizations of a into irreducible
elements. Then OK is factorial (in other words, |Z(a)| = 1 for all non-zero
a ∈ OK) if and only if |G| = 1. Suppose that |G| ≥ 2 and let k ∈ N. In the
1960s P. Rémond and W. Narkiewicz initiated the study of the asymptotic
behavior of counting functions associated with non-unique factorizations
(for an overview and historical references see [17, 4]). Among others, the
function

Fk(x) = |{aOK : a ∈ OK \ {0}, (OK :aOK) ≤ x and |Z(a)| ≤ k}|
was considered. It counts the number of principal ideals aOK where 0 6=
a ∈ OK has at most k distinct factorizations and whose norm is bounded
by x. In [15] it was proved that Fk(x) behaves for x → ∞ asymptotically
like

x(log x)1−1/|G|(log log x)Nk(·).

This result was refined and extended in several ways: the asymptotics
were sharpened in [10], the function field case was handled in [9], Chebotarev
formations in [6] and non-principal orders in global fields in [5]. For more
recent development see [4, Section 9.3] and [21, 14, 13, 11, 12]. In [16, 18],
W. Narkiewicz and J. Śliwa showed that the exponents Nk(·) depend only
on the class group G, and they gave a combinatorial description of Nk(G)
(see Definition 2.1 below). This description was used by W. D. Gao for a
first detailed investigation of Nk(G) in [1]. In two recent papers [2] and [3],
the investigation of Nk(G) has been continued with new methods from com-
binatorial number theory. Before going into details we briefly outline how
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these studies are embedded into the more general study of the arithmetic
of OK .

Suppose that G ∼= Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · |nr. Since |G| ≥ 2,
OK is not factorial. The non-uniqueness of factorizations in OK is described
by a variety of arithmetical invariants—such as sets of lengths or the cate-
nary degree—and they depend only on the class group G (the same is true
not only for rings of integers but more generally for Krull monoids with finite
class group where every class contains a prime divisor). Thus the goal is to
determine their precise values in terms of the group invariants n1, . . . , nr, or
to describe them in terms of classical combinatorial invariants, such as the
Davenport constant or the Erdős–Ginzburg–Ziv constant. Roughly speak-
ing, a good understanding of these combinatorial invariants is restricted to
groups of rank at most two, and thus no more can be expected for the more
sophisticated arithmetical invariants.

Back to the Narkiewicz constants: A straightforward example shows that
N1(G) ≥ n1 + · · ·+nr (see inequality (2.2)), and in 1982 W. Narkiewicz and
J. Śliwa conjectured that equality holds. Since on the other hand the Dav-
enport constant D(G) is a lower bound for N1(G) (see inequality (2.1)), the
Narkiewicz–Śliwa conjecture, if true, would provide an upper bound for the
Davenport constant which is substantially stronger than all bounds known
so far. Thus it is not surprising that up to now this conjecture has been val-
idated only for a few classes of groups including cyclic groups, elementary
2-groups and elementary 3-groups ([4, Theorem 6.2.8]).

In this paper we shall determine N1(G) for groups of rank two and obtain
several related results. Our main results will be presented in the next section
(see Theorems 2.3–2.6).

2. Notations and the main results. We denote by N the set of posi-
tive integers, by P ⊆ N the set of prime numbers, and we write N0 = N∪{0}.
For real numbers a, b ∈ R, we write [a, b] = {x ∈ Z : a ≤ x ≤ b}. By a
monoid, we always mean a commutative semigroup with identity which sat-
isfies the cancelation law (that is, if a, b, c are elements of the monoid with
ab = ac, then b = c follows).

Let H be a monoid and a, b ∈ H. We denote by A(H) the set of atoms
(irreducible elements) of H and by H× the set of invertible elements of H.
The monoid H is said to be reduced if H× = {1}. Let Hred = H/H× =
{aH× : a ∈ H} be the associated reduced monoid.

A monoid F is called free (with basis P ⊆ F ) if every a ∈ F has a unique
representation of the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.
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We set F = F(P ) and call

|a|F = |a| =
∑
p∈P

vp(a)

the length of a. The monoid Z(H) = F(A(Hred)) is the factorization monoid
of H and π : Z(H) → Hred denotes the natural homomorphism given by
mapping a factorization to the element it factorizes. Then the set Z(a) =
π−1(aH×) ⊆ Z(H) is called the set of factorizations of a, and we say that a
has unique factorization if |Z(a)| = 1. The set L(a) = {|z| : z ∈ Z(a)} ⊆ N0

is called the set of lengths of a.

All abelian groups will be written additively. For n ∈ N, let Cn denote
a cyclic group with n elements. Let G be an abelian group and G0 ⊆ G a
subset. Then 〈G0〉 ⊆ G is the subgroup generated by G0, G

•
0 = G0 \ {0},

and −G0 = {−g : g ∈ G0}. A family (ei)i∈I of non-zero elements of G is
said to be independent if∑

i∈I
miei = 0 implies miei = 0 for all i ∈ I, where mi ∈ Z.

If I=[1, r] and (e1, . . . , er) is independent, then we simply say that e1, . . . , er
are independent elements of G. The tuple (ei)i∈I is called a basis if (ei)i∈I
is independent and 〈{ei : i ∈ I}〉 = G. If 1 < |G| <∞, then we have

G ∼= Cn1 ⊕ · · · ⊕ Cnr , and we set d∗(G) =
r∑

i=1

(ni − 1) ,

where r = r(G) ∈ N is the rank of G, n1, . . . , nr ∈ N are integers with
1 < n1 | · · · |nr and nr = exp(G) is the exponent of G. If |G| = 1, then
r(G) = 0, exp(G) = 1, and d∗(G) = 0.

The arithmetic of Krull monoids is studied by using two classes of aux-
iliary monoids: block monoids (in other words, monoids of zero-sum se-
quences) and type monoids (see [4, Sections 3.4 and 3.5]). We need both
concepts for our investigations.

Monoid of zero-sum sequences. Let G be a finite additively written
abelian group.

The elements of the free monoid F(G0) are called sequences over G0. Let

S =
∏
g∈G0

gvg(S), where vg(S) ∈ N0 for all g ∈ G0

and vg(S) = 0 for almost all g ∈ G0,

be a sequence over G0. We call vg(S) the multiplicity of g in S, and we say
that S contains g if vg(S) > 0. A sequence S1 is called a subsequence of S
if S1 |S in F(G) (equivalently, vg(S1) ≤ vg(S) for all g ∈ G). If a sequence
S ∈ F(G0) is written in the form S = g1 · · · gl, we tacitly assume that l ∈ N0
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and g1, . . . , gl ∈ G. For a sequence

S = g1 · · · gl =
∏
g∈G0

gvg(S) ∈ F(G0),

we call |S| = l =
∑

g∈G0
vg(S) ∈ N0 the length of S, supp(S) = {g ∈ G0 :

vg(S) > 0} ⊂ G0 the support of S, σ(S) =
∑l

i=1 gi =
∑

g∈G0
vg(S)g ∈ G the

sum of S, and Σ(S) = {
∑

i∈I gi : ∅ 6= I ⊆ [1, l]} the set of subsums of S. For
g ∈ G, we set g + S = (g + g1) · · · (g + gl) ∈ F(G).

The sequence S is called

• a zero-sum sequence if σ(S) = 0,
• short (in G) if 1 ≤ |S| ≤ exp(G),
• zero-sum free if there is no non-empty zero-sum subsequence,
• a minimal zero-sum sequence if S is a non-empty zero-sum sequence

and every subsequence S′ of S with 1 ≤ |S′| < |S| is zero-sum free.

We denote by B(G0) = {S ∈ F(G0) : σ(S) = 0} the monoid of zero-sum
sequences over G0, by A(G0) the set of all minimal zero-sum sequences over
G0 (this is the set of atoms of the monoid B(G0)), and by

D(G0) = sup{|U | : U ∈ A(G0)} ∈ N ∪ {∞}
the Davenport constant of G0. Every map of abelian groups ϕ : G → H
extends to a homomorphism ϕ : F(G) → F(H) by setting ϕ(S) =
ϕ(g1) · · ·ϕ(gl). If ϕ is a homomorphism, then ϕ(S) is a zero-sum sequence
if and only if σ(S) ∈ Ker(ϕ).

For many zero-sum problems, the ordering of the elements of a sequence
is not important. But when we count the number of subsequences with a
given property or consider the so-called unique factorization, we need to
grant a sequence an ordering or label. There are two popular ways to label
a sequence: one is to introduce the index set as done by Narkiewicz in 1979
([16]), and the other uses the concept of type as we do in a recent paper [2]. In
the present paper we shall use the concept of type which was first introduced
by Halter-Koch in 1992 ([6]).

Monoid of zero-sum types. Elements of the free monoid F(G0 ×N)
are called types over G0. Clearly, they are sequences over G0 × N, but we
think of them as labeled sequences over G0 where each element of G0 carries
a positive integer label. Let α : F(G0 × N) → F(G0) denote the unique
homomorphism satisfying

α((g, n)) = g for all (g, n) ∈ G0 × N,

and let σ = σ◦α : F(G0×N)→ G. For a type T ∈ F(G0×N), α(T ) ∈ F(G0)
is the associated (unlabeled) sequence. We say that T is a zero-sum type
(resp. short, zero-sum free or a minimal zero-sum type) if the associated
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sequence has the relevant property, and we set Σ(T ) = Σ(α(T )). We denote
by

T (G0) = {T ∈ F(G0 × N) : σ(T ) = 0} = α−1(B(G0)) ⊆ F(G0 × N)

the monoid of zero-sum types over G0 (briefly, the type monoid over G0).
Type monoids were introduced by F. Halter-Koch in [8] and applied suc-
cessfully in the analytic theory of so-called type-dependent factorization
properties (see [4, Section 9.1], and [6, 7] for some early papers).

Every map of abelian groups ϕ : G→ H extends to a unique homomor-
phism ϕ : F(G0 × N) → F(H × N) satisfying ϕ((g, n)) = (ϕ(g), n) for all
(g, n) ∈ G0 × N . We denote by ϕ = ϕ ◦α : F(G0 × N)→ F(H) the unique
homomorphism satisfying ϕ((g, n)) = ϕ(g) for all (g, n) ∈ G0 × N.

Let τ : F(G0)→ F(G0 × N) be defined by

τ(S) =
∏
g∈G0

vg(S)∏
k=1

(g, k) ∈ F(G0 × N).

For S ∈ F(G0), we call τ(S) the type associated with S. The map β =
α|T (G0) : T (G0) → B(G0) is a transfer homomorphism (see [4, Proposition
3.5.5]), and hence in particular L(B) = L(τ(B)) for all B ∈ B(G•). Let T
and T ′ be two squarefree zero-sum types with α(T ) = α(T ′). Then there is
a bijection from Z(T ) to Z(T ′), and hence |Z(T )| = |Z(T ′)|. In particular,
|Z(T )| = |Z(τ(α(T )))|. Let T = (g1, a1) · · · (gl, al) ∈ F(G × N) be a type.
For every g ∈ G, define (g, 0) + T = (g + g1, a1) · · · (g + gl, al).

The greatest common divisor of sequences S, S′ ∈ F(G0), denoted by
gcd(S, S′), is defined to be the greatest common subsequence of S and S′

(i.e. it is always taken in the monoid F(G0)). The sequences S and S′ are
called coprime if gcd(S, S′) = 1. Similarly, the greatest common divisor of
types T, T ′ ∈ F(G0×N), denoted by gcd(T, T ′), is defined to be the greatest
common subtype of T and T ′ (i.e. it is always taken in F(G0 × N)). The
types T and T ′ are called coprime if gcd(T, T ′) = 1.

Narkiewicz constants. We start with the definition of the Narkiewicz
constants (see [4, Definition 6.2.1]). Theorem 9.3.2 in [4] provides an asymp-
totic formula for the Fk(x) function—the Narkiewicz constants occur as ex-
ponents of the log log x term—in the framework of obstructed quasi-forma-
tions (this setting includes non-principal orders in holomorphy rings in global
fields).

Definition 2.1. A type T ∈ F(G×N) is called squarefree if vg,n(T ) ≤ 1
for all (g, n) ∈ G×N. For every k ∈ N, the Narkiewicz constant ofG is defined
by

Nk(G) = sup{|T | : T ∈ T (G•) squarefree, |Z(T )| ≤ k} ∈ N0 ∪ {∞}.
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If U ∈ A(G•), then τ(U) has unique factorization, and hence

(2.1) D(G) ≤ N1(G).

Let G = Cn1 ⊕ · · · ⊕Cnr with 1 < n1 | · · · |nr and let (e1, . . . , er) be a basis
of G with ord(ei) = ni for all i ∈ [1, r]. Observe that

if B =

r∏
i=1

eni
i , then τ(B) =

r∏
i=1

ni∏
k=1

(ei, k)

has unique factorization, and hence

(2.2)
r∑

i=1

ni ≤ N1(G) ≤ N2(G) ≤ · · · .

In [18], W. Narkiewicz and J. Śliwa conjectured that N1(G) equals the above
lower bound for all finite abelian groups.

We need some other definitions:

Definition 2.2. Let G be a finite abelian group and g ∈ G. We denote
by

• s(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of
length |S| ≥ l has a zero-sum subsequence T of length |T | = exp(G);
the invariant s(G) is called the Erdős–Ginzburg–Ziv constant of G;
• η(G) the smallest integer l ∈ N such that every sequence S ∈ F(G) of

length |S| ≥ l has a short zero-sum subsequence (equivalently, S has
a short minimal zero-sum subsequence);
• η∗g(G) the smallest integer l ∈ N such that every sequence S ∈ F(G•)

of length |S| ≥ l and with sum σ(S) = g has two different short
minimal zero-sum subsequences T1 and T2 such that 1 6= gcd(T1, T2).
We set

η∗(G) = max{η∗h(G) : h ∈ G}.
Now we can state our main results:

Theorem 2.3. Let G = Cn1 ⊕ Cn2 with 1 < n1 |n2. Then

N1(G) = n1 + n2.

Theorem 2.4. Let G = Cp ⊕ Cp, where p is a prime, and let T ∈
F(G• × N) be a squarefree type of length |T | = 2p. If T does not have two
minimal zero-sum subtypes which are not coprime, then there exists a basis
(e1, e2) of G such that

α(T ) = ep1

p∏
i=1

(aie1 + e2),

where
∑p

i=1 ai ≡ 0 (mod p).
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Theorem 2.5. Let G = Cp⊕Cp, where p is a prime. Let S ∈ F(G•×N)
be a squarefree type of length |S| = 3p. If S does not have two short minimal
zero-sum subtypes which are not coprime, then there exists a basis (e1, e2)
of G and a1, a2 ∈ [1, p− 1] such that α(S) = ep1e

p
2(a1e1 + a2e2)

p.

Theorem 2.6. Let G = Cn ⊕ Cn, where n is a positive integer. Then
η∗(G) = 3n+ 1.

3. Preliminaries. In this section we first gather some known results
needed in this paper, and then we employ group algebra as a tool to derive
a result on subsequence sums (see Theorem 3.12), which will be crucial in
the proof of Theorem 2.4 and might be of independent interest.

Lemma 3.1 ([4, Theorem 5.8.3]). Let G = Cn1 ⊕ Cn2 with 1 ≤ n1 |n2.
Then

s(G) = 2n1 + 2n2 − 3, η(G) = 2n1 + n2 − 2, D(G) = n1 + n2 − 1.

Lemma 3.2 ([4, Proposition 5.7.7]). Let G = Cp ⊕ Cp, where p is a
prime. Suppose S ∈ F(G) is a sequence with |S| ≥ 3p − 2. Then S has a
zero-sum subsequence T ∈ F(G) of length |T | ∈ {p, 2p}.

Lemma 3.3 ([2, Lemma 2.2]). Let G be an abelian group with |G| > 1
and T ∈ T (G•) be a squarefree zero-sum type. Then the following statements
are equivalent:

(a) |Z(T )| = 1.
(b) If U, V ∈ T (G) with U |T and V |T , then gcd(U, V ) has sum zero.

Lemma 3.4 ([2, Lemma 3.9]). Let G be a finite abelian group with
|G| > 1, and let T = U1 · · ·Ur ∈ T (G•) be a squarefree type with r ∈ N
and U1, . . . , Ur ∈ A(T (G•)).

(1) If |Z(T )| = 1, then
∏r

i=1 |Ui| ≤ |G|.
(2) Let S1, . . . , St ∈ F(G×N) be such that S1 · · ·St is a zero-sum subtype

of T . If |Z(T )| = 1, then τ(σ(S1) · · ·σ(St)) has unique factorization.
(3) If T does not have two short minimal zero-sum subtypes which are

not coprime and |T | ≤ 2 exp(G) + 1, then |Z(T )| = 1.

Lemma 3.5 ([3, Theorem 1.2]). N1(Cp ⊕ Cp) = 2p, where p is a prime.

We need the following well known result:

Lemma 3.6. If S is a minimal zero-sum sequence over Cn of length
|S| = n, then S = gn for some g ∈ Cn.

Lemma 3.7 ([2, Theorem 3.14(a)]). Let G = Cmn ⊕Cmn with n,m ≥ 2.
If η∗(Cm⊕Cm) = 3m+ 1 and η∗(Cn⊕Cn) = 3n+ 1 then η∗(Cmn⊕Cmn) =
3mn+ 1.
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Lemma 3.8 ([3, Lemma 4.4]). Let G = Cn1p⊕Cn2p with 1 ≤ n1 |n2 and
p being a prime. Suppose that N1(Cn1 ⊕ Cn2) = n1 + n2 for n1 > 1, and
suppose that η∗(Cp ⊕ Cp) = 3p+ 1. Then N1(G) = n1p+ n2p.

Remark 3.9. If n1 = 1 then N1(Cn1 ⊕ Cn2) = N1(Cn2) = n2 has been
proved by Narkiewicz [16] (see also [4, Theorem 6.2.8] or [2, Theorem 5.1]).
In [3], Lemma 3.8 is stated only for n1 > 1, but the proof given there works
also for n1 = 1.

Let F be a field, and let G be a finite abelian group. The group algebra
F [G] of G over F is a free F -module with basis {Xg : g ∈ G} (built with a
symbol X), where multiplication is defined by(∑

g∈G
agX

g
)(∑

g∈G
bgX

g
)

=
∑
g∈G

(∑
h∈G

ahbg−h

)
Xg.

Let p be a prime. From now on, let F = Fp be the finite field of p
elements. Let G be a finite abelian p-group. For any non-empty sequence
S = g1 · . . . · gl ∈ F(G), we define

Π(S) =
l∏

i=1

(1−Xgi) =
∏
g∈G

(1−Xg)vg(S) ∈ Fp[G],

HS = {g ∈ G : (1−Xg)Π(S) = 0 ∈ Fp[G]}.
Then HS is a subgroup of G.

Lemma 3.10. Let p be a prime, G be a finite abelian p-group, and let
S ∈ F(G•).

(1) If |S| ≥ D(G) then Π(S) = 0 ∈ Fp[G].
(2) If |S| = D(G)− 1 and Π(S) 6= 0 then G• ⊆ Σ(S).
(3) If HS = G and Π(S) 6= 0 then G• ⊆ Σ(S).
(4) If |S| = D(G) − 2 and Π(S) 6= 0 then there exists h ∈ G such that

G• \Σ(S) ⊆ h+HS.

Proof. Let

Π(S) =
∑
g∈G

agX
g.

(1) See [19] or [4, Proposition 5.5.8].

(2) See [4, Proposition 5.5.8].

(3) If HS = G then for any h ∈ G we have (1 − Xh)
∑

g∈G agX
g =∑

g∈G(ag − ag−h)Xg = 0. It follows that a0 = a−h for every h ∈ G. Thus
α = a0

∑
g∈G g 6= 0. This implies that G• ⊆ Σ(S).

(4) We only need to prove that for any h1, h2 ∈ G• \Σ(S), h1−h2 ∈ HS .
If h1 − h2 6∈ HS , then (1−Xh1−h2)Π(S) 6= 0 and |(h1 − h2)S| = D(G)− 1.
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By (3), G• ⊆
∑

(h1 − h2)S. So there exists a subsequence T |S such that
h1 = (h1− h2) + σ(T ). It follows that h2 = σ(T ) ∈ Σ(S), a contradiction.

Let p be a prime, and let G = Cp ⊕ Cp. Let S ∈ F(G) and let A ⊆ G.
Define

• SA to be the maximal subsequence of S such that supp(SA) ⊆ A;
• λ(S) = max{|SH | : H is a subgroup of G of order p};
• Λ(S) = |{H : H is a subgroup of G of order p and SH 6= 1}|.

Lemma 3.11 ([20, Theorem 1]). Let G = Cp ⊕ Cp and S ∈ F(G•) with
p ≤ |S| ≤ 2p− 2. If λ(S) ≤ p− 1 and Λ(S) ≤ 2p− 1− |S|, then Π(S) 6= 0 ∈
Fp[G].

Theorem 3.12. Let p be a prime, G = Cp⊕Cp, and let S ∈ F(G•) with
|S| = 2p−2. If λ(S) ≤ p−1 then there exists g ∈ G such that G\{g} ⊆ Σ(S).

Proof. Let

S = a1 · · · a2p−2.

Assume to the contrary that G• \ {g} 6⊆ Σ(S) for every g ∈ G. It follows
that

G• 6⊆ Σ(S).

Let Λ(S) = t with 1 ≤ t ≤ p+1. By renumbering if necessary we assume
that

a1, . . . , at

are in distinct cyclic subgroups of G.

Let S0 = S(a1 · · · at)−1. Then λ(S0) ≤ λ(S) ≤ p − 1 and Λ(S0) ≤ t =
2p− 2− |S0| < 2p− 1− |S0|. By Lemma 3.11,

∏
g|S0

(1−Xg) 6= 0. Let S1 be

the maximal subsequence of S such that S0 |S1 and
∏

g|S1
(1−Xg) 6= 0.

If |S1| = 2p− 2, then G• ⊆ Σ(S1) ⊆ Σ(S) by Lemma 3.10, a contradic-
tion.

If |S1| ≤ 2p − 4, then there exist ai, aj with 1 ≤ i < j ≤ t such that
(1 − Xai)

∏
g|S1

(1 − Xg) = (1 − Xaj )
∏

g|S1
(1 − Xg) = 0. Therefore, G =

〈ai, aj〉 ⊆ HS1 ⊆ G. Hence, HS1 = G. It follows from Lemma 3.10 that
G• ⊆ Σ(S1) ⊆ Σ(S), again a contradiction. Therefore,

|S1| = 2p− 3.

By renumbering if necessary we can assume that S = S1a1. Since
D(G) − 2 = 2p − 3 , G• 6⊆ Σ(S) and a1 ∈ HS1 , it follows from Lemma
3.10 that there exists h1 ∈ G such that G• \Σ(S1) ⊆ h1 + 〈a1〉.

Let S′0 = S(a2, . . . , at)
−1. Then λ(S′0) ≤ λ(S) ≤ p − 1 and Λ(S′0) ≤ t =

2p− 2− |S′0|+ 1 = 2p− 1− |S′0|. By Lemma 3.11,
∏

g|S′
0
(1−Xg) 6= 0.
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Let S′1 be the maximal subsequence of S such that S′0 |S′1 and∏
g|S′

1
(1−Xg) 6= 0. In a similar way to above we deduce that |S′1| = 2p− 3

and there exists h2 ∈ G such that G• \Σ(S1) ⊆ h2 + 〈ai〉 for some i ∈ [2, t].

Since 1 6= i we have |h1 + 〈a1〉 ∩ h2 + 〈ai〉| = 1. Let h1 + 〈a1〉 ∩ h2 + 〈ai〉
= {g}. Then

(3.1) G• \Σ(S) ⊆ h1 + 〈a1〉 ∩ h2 + 〈ai〉 = {g}.

Since
∏

g|S(1 −Xg) = 0, we have 0 ∈ Σ(S). This together with (3.1) gives

G \ {g} ⊆ Σ(S).

4. Proofs of the main results. In this section we first generalize
the concept of unique factorization to any squarefree type (not necessarily
zero-sum).

Definition 4.1. Let G be an abelian group with |G| > 1 and T ∈
F(G• ×N) be a squarefree type. We say T has unique factorization if there
is only one way to write T in the form T = U1 · · ·UrU

′, where U1, . . . , Ur

are all minimal zero-sum types and U ′ is zero-sum free.

We have the following result similar to Lemma 3.3.

Lemma 4.2. Let G be an abelian group with |G| > 1 and T ∈ F(G•×N)
be a squarefree type. Then the following statements are equivalent:

(a) T has unique factorization.
(b) If U, V ∈ T (G) with U |T and V |T , then gcd(U, V ) has sum zero.

Lemma 4.3. Let G be a finite abelian group and let T ∈ F(G•×N) be a
squarefree type of length |T | = N1(G). If T has unique factorization then T
is zero-sum.

Proof. If σ(α(T )) 6= 0, there exists a squarefree type T1 ∈ T (G•) such
that T1 = Tw, where w ∈ G•×N and α(w) = −σ(α(T )). Since |T1| > N1(G),
T1 have two distinct factorizations:

T1 = Z1 · · ·ZrX1 · · ·Xu = Z1 · · ·ZrY1 · · ·Yv
where Zi, Xi, Yk are all minimal zero-sum types, Xi 6= Yj for all i ∈ [1, u]
and j ∈ [1, v], and u, v ≥ 2. So X1 · · ·Xu = Y1 · · ·Yv. It follows that there
exist Xi and Yj with w - Xi, w - Yj such that gcd(Xi, Yj) 6= 1, contradicting
Lemma 4.2.

We also need the following easy result.

Lemma 4.4. Let G = Cn with n 6= 4, and let T ∈ F(G• × N) be a
squarefree type of length |T | = n. If T has unique factorization then there
exists g ∈ G such that α(T ) = gn.
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Proof. By Lemma 4.3, we know that T ∈ T (G•). If T is a minimal
zero-sum type then the result follows from Lemma 3.6. Otherwise n ≥ 5
and T = X1 · · ·Xu with u ≥ 2 and all Xi being minimal zero-sum subtypes
of length not less than two. It follows that |X1| · · · |Xu| > n, contradicting
Lemma 3.4.

Proof of Theorem 2.4. We distinguish two cases:

Case 1: λ(α(T )) ≥ p. There exists a subtype T1 |T of length |T1| = p
such that α(T1) is a zero-sum sequence over some subgroup H of G with
H ∼= Cp. Since T1 has unique factorization, by Lemma 4.4 there exists
e1 ∈ G• such that α(T1) = ep1. Now T1 is a minimal zero-sum subtype of T
of length |T1| = p. From Lemma 3.4 we infer that TT−11 is also a minimal
zero-sum type of T . We can assume that

α(T ) = ep1

p∏
i=1

(aie1 + bie2)

for some basis (e1, e2) of G.

If b1 · · · bp is a minimal zero-sum sequence over Cp then b1 = · · · = bp by
Lemma 3.6. Let e′2 = b1e2. Then (e1, e

′
2) is also a basis of G and α(T ) has the

desired form with the basis (e1, e
′
2). So, we may assume that b1 · · · bp is not

minimal zero-sum. Then there is a subset I ⊆ [1, p] such that
∑

i∈I bi = 0

and 1 ≤ |I| < p. Since TT−11 is a minimal zero-sum type, we have
∑

i∈I ai 6=
0 ∈ Cp. Therefore,

e
p−

∑
i∈I ai

1

∏
i∈I

(aie1 + bie2)

is a zero-sum subsequence of α(T ) and p −
∑

i∈I ai ∈ [1, p − 1]. So we can
find two zero-sum subtypes W1 and W2 of T such that α(W1) = α(W2) =

e
p−

∑
i∈I ai

1

∏
i∈I(aie1+bie2) and α(gcd(W1,W2)) = e1 is not zero-sum, a con-

tradiction.

Case 2: λ(α(T )) ≤ p− 1. Let T2 be a minimal zero-sum subtype of T .
It follows from λ(α(T )) ≤ p− 1 that | supp(α(T2))| ≥ 2. Let a, b ∈ G• × N
be such that ab |T2 and α(a) 6= α(b). Since |α(T (ab)−1)| = 2p − 2, from
λ(α(T (ab)−1)) ≤ p − 1 and Theorem 3.12, −α(a) ∈ Σ(α(T (ab)−1)) or
−α(b) ∈ Σ(α(T (ab)−1)). Without loss of generality, we can assume that
−α(a) ∈ Σ(α(T (ab)−1)). It follows that there exists a minimal zero-sum
subtype T3 such that a |T3 and b - T3, a contradiction.

Proof of Theorem 2.5. Clearly a subtype of S does not have two short
minimal zero-sum subtypes which are not coprime. Since |S| = 3p > 3p− 2,
by Lemma 3.2, S has a zero-sum subtype T ∈ T (G•) of length |T | ∈ {p, 2p}.
We distinguish two cases.
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Case 2: S has a zero-sum subtype T ∈ T (G•) of length |T | = 2p. Since
T does not have two short minimal zero-sum subtypes which are not coprime,
by Theorem 2.4, T = T1T2, where T1, T2 are minimal zero-sum subtypes of
length p.

Choose x, y ∈ G• × N with x |T1 and y |T2. Since |Sx−1y−1| = 3p − 2,
by Lemma 3.2, Sx−1y−1 has a zero-sum subtype T ′ ∈ T (G•) of length
|T ′| ∈ {p, 2p}.

If |T ′| = 2p, then again by Theorem 2.4 we know that T ′ = T ′1T
′
2 with

T ′1, T
′
2 minimal zero-sum subtypes of length p. So T1T2T

′
1T
′
2 |S, yielding a

contradiction.

If |T ′| = p, then gcd(T1, T
′) = gcd(T2, T

′) = 1. Thus S = T1T2T
′.

Since T1T2, T1T
′ and T2T

′ are zero-sum subtypes of length 2p, by using
Theorem 2.4 repeatedly, we infer that there exists a basis (e1, e2) of G such
that α(S) = ep1e

p
2

∏p
i=1(aie1 + bie2)

p. Now in a similar way to the proof of
Theorem 2.4 we deduce that a1 = · · · = ap and b1 = · · · = bp.

Case 2: S does not have a zero-sum subtype of length 2p. Let T1, . . . , Tr
be all zero-sum subtypes of S of length p. We show next that

(4.1) gcd(T1, . . . , Tr) = 1.

Assume to the contrary that x | gcd(T1, . . . , Tr) for some x ∈ G• × N.
Consider Sx−1. Since |Sx−1| = 3p− 1, by Lemma 3.2 we deduce Sx−1 has
a zero-sum subtype T ′ ∈ T (G•) of length |T ′| ∈ {p, 2p}. Since S does not
have a zero-sum subtype of length 2p, we get |T ′| = p. But T ′ is different
from all of T1, . . . , Tr, a contradiction since T1, . . . , Tr are all the zero-sum
subtypes of S of length p. This proves that gcd(T1, . . . , Tr) = 1. It follows
that

r ≥ 2.

Clearly |Z(T1)| = · · · = |Z(Tr)| = 1. Since S does not have a zero-sum
subtype of length 2p, we infer that |gcd(Ti, Tj)| 6= 1 for all i, j ∈ [1, r].
Therefore,

gcd(Ti, Tj) is a nonempty zero-sum type

for all i, j ∈ [1, r]. This together with r ≥ 2 shows that no Ti is a minimal
zero-sum type. Hence,

p ≥ 5.

If p = 5, then Ti = X
(i)
1 X

(i)
2 for each i ∈ [1, r], where |X(i)

1 | = 2,

|X(i)
2 | = 3, and X

(i)
1 , X

(i)
2 are both minimal zero-sum types. From (4.1)

we know that there exist i, j ∈ [1, r] such that X
(i)
1 6= X

(1)
1 and X

(j)
2 6= X

(2)
1 .

So X
(1)
1 X

(i)
1 X

(1)
2 X

(j)
2 is a zero-sum type of T of length 10 = 2× 5, a contra-

diction.
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Let p = 7. If there exists Ti = X1X2 such that |X1| = 2, |X2| = 5, where
X1, X2 are minimal zero-sum types, then from (4.1) we know that there
exists Tj = X1X3 such that gcd(Tj , X2) = 1, where X3 is a zero-sum type.
Let W = X1X2X3; then |Z(W )| = 1 by Lemma 3.4. But |X1| |X2| |X3| =
50 > 49, contradicting Lemma 3.4.

Otherwise, for every i, Ti = X
(i)
1 X

(i)
2 , where |X(i)

1 | = 3, |X(i)
2 | = 4, X

(i)
1

is a minimal zero-sum type and X
(i)
2 is a zero-sum type. If X

(i)
2 is a minimal

zero-sum type for each i ∈ [1, r], then similarly to the case of p = 5 we

infer that there exist i, j ∈ [1, r] such that X
(i)
1 6= X

(1)
1 and X

(j)
2 6= X

(2)
1 . So

X
(1)
1 X

(i)
1 X

(1)
2 X

(j)
2 is a zero-sum type of T of length 14 = 2·7, a contradiction.

So X
(i)
2 = Y1Y2 for some i ∈ [1, r], where |Y1| = |Y2| = 2, and both Y1

and Y2 are minimal zero-sum types. Without loss of generality, we assume
that i = 1. From (4.1) we know that there exists some i ∈ [1, r] such that

X
(i)
1 6= X

(1)
1 . If there is j ∈ [2, r] such that X

(j)
2 is a minimal zero-sum type,

thenX
(1)
1 Y1Y2X

(i)
1 X

(j)
2 is a zero-sum type of length 14 = 2·7, a contradiction.

Therefore, for every j ∈ [2, r], X
(j)
2 is a product of two minimal zero-sum

types each of length two. Again from (4.1) we know that there exists j ∈
[2, r] such that Tj has a minimal zero-sum subtype Z with |Z| = 2 and

gcd(Z, T1) = 1. So T1X
(i)
1 Z = X

(1)
1 Y1Y2X

(i)
1 Z has unique factorization by

Lemma 3.4. But |X(1)
1 | |Y1| |Y2| |X

(i)
1 | |Z| = 72 > 49, a contradiction. Hence

we can assume that

p ≥ 11.

Subcase 2.1: There exists i ∈ [1, r] such that Ti has a minimal zero-sum
subtype X1 with |X1| ≥ (p+ 1)/2. From (4.1) we know that there exists
some j ∈ [1, r]\{i} such that gcd(Tj , X1) = 1. It follows that |gcd(Ti, Tj)| ≤
(p− 1)/2. Let Ti = A1 · · ·AtX1 · · ·Xu and Tj = A1 · · ·AtY1 · · ·Yv, where
A1, . . . , At, X1, . . . , Xu, Y1, . . . , Yv are different minimal zero-sum subtypes
of S. Let

T = A1 · · ·AtX1 · · ·XuY1 · · ·Yv.

Clearly |T | < 2p. Since T does not have two short minimal zero-sum sub-
types which are not coprime, by Lemma 3.4(3) we infer that |Z(T )| = 1.
Since p ≥ 11 and 2 ≤ |A1| + · · · + |At| ≤ (p− 1)/2, it follows from Lemma
3.4(1) that

p2 ≥ |A1| · · · |At| |X1| · · · |Xu| |Y1| · · · |Yv|
≥ (|A1|+ · · ·+ |At|)(|X1|+ · · ·+ |Xu|)(|Y1|+ · · ·+ |Yv|)
= (|A1|+ · · ·+ |At|)(p− (|A1|+ · · ·+ |At|))2 ≥ 2(p− 2)2 > p2,

a contradiction.
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Subcase 2.2: For every i ∈ [1, r] and every minimal zero-sum subtype
X of Ti, we have |X| ≤ (p− 1)/2. Since |T1| = p and p is an odd prime, we
infer that T1 contains a minimal zero-sum subtype X1 of length |X1| ≥ 3.
From (4.1) we know that there exists some i ∈ [2, r] such that gcd(Ti, X1)
= 1. It follows that |gcd(T1, Ti)| ≤ p − 3. Let T1 = A1 · · ·AtX1 · · ·Xu and
Ti = A1 · · ·AtY1 · · ·Yv, where A1, . . . , At, X1, . . . , Xu, Y1, . . . , Yv are different
minimal zero-sum subtypes of S. Let

T = A1 · · ·AtX1 · · ·XuY1 · · ·Yv.
Clearly |T | < 2p. Since T does not have two short minimal zero-sum sub-
types which are not coprime, by Lemma 3.4(3) we infer that |Z(T )| = 1. By
Lemma 3.4(1),

p2 ≥ |A1| · · · |At| |X1| · · · |Xu| |Y1| · · · |Yv|
≥ |A1| · · · |At| |X1| |X2| · · · |Xu|(|Y1|+ · · ·+ |Yv|)
= |A1| · · · |At| |X1| |X2| · · · |Xu|(|X1|+ · · ·+ |Xu|)

≥


3 · p− 1

2
· p− 5

2
· 3 > p2 if |X1|+ · · ·+ |Xu| = 3 and p ≥ 11,

2 · p− 1

2
· p− 3

2
· 4 > p2 if |X1|+ · · ·+ |Xu| > 3 and p ≥ 11,

yielding a contradiction.

Proof of Theorem 2.6. By Lemma 3.7, it suffices to show that the
theorem is true for n = p a prime. This follows from Theorem 2.5.

Proof of Theorem 2.3. Since N1(C1 ⊕ Cn) = N1(Cn) = n for every
integer n and N1(Cp⊕Cp) = 2p for every prime number p, the result follows
from Theorem 2.6 and Lemma 3.8 by induction.
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