A quantitative aspect of non-unique factorizations:
the Narkiewicz constants III

by

WEIDONG GAO, JIANGTAO PENG and QINGHAI ZHONG (Tianjin)

1. Introduction. Let \(K \) be an algebraic number field, \(\mathcal{O}_K \) its ring of integers and \(G \) its ideal class group. For a non-zero element \(a \in \mathcal{O}_K \) let \(Z(a) \) denote the set of all (essentially distinct) factorizations of \(a \) into irreducible elements. Then \(\mathcal{O}_K \) is factorial (in other words, \(|Z(a)| = 1\) for all non-zero \(a \in \mathcal{O}_K \)) if and only if \(|G| = 1\). Suppose that \(|G| \geq 2\) and let \(k \in \mathbb{N} \). In the 1960s P. Rémond and W. Narkiewicz initiated the study of the asymptotic behavior of counting functions associated with non-unique factorizations (for an overview and historical references see [17, 4]). Among others, the function

\[
F_k(x) = |\{a\mathcal{O}_K : a \in \mathcal{O}_K \setminus \{0\}, (\mathcal{O}_K : a\mathcal{O}_K) \leq x \text{ and } |Z(a)| \leq k\}|
\]

was considered. It counts the number of principal ideals \(a\mathcal{O}_K \) where \(0 \neq a \in \mathcal{O}_K \) has at most \(k \) distinct factorizations and whose norm is bounded by \(x \). In [15] it was proved that \(F_k(x) \) behaves for \(x \to \infty \) asymptotically like

\[
x(\log x)^{1-1/|G|}(\log \log x)^{N_k(\cdot)}.
\]

This result was refined and extended in several ways: the asymptotics were sharpened in [10], the function field case was handled in [9], Chebotarev formations in [6] and non-principal orders in global fields in [5]. For more recent development see [4, Section 9.3] and [21, 14, 13, 11, 12]. In [16, 18], W. Narkiewicz and J. Śliwa showed that the exponents \(N_k(\cdot) \) depend only on the class group \(G \), and they gave a combinatorial description of \(N_k(G) \) (see Definition 2.1 below). This description was used by W. D. Gao for a first detailed investigation of \(N_k(G) \) in [1]. In two recent papers [2] and [3], the investigation of \(N_k(G) \) has been continued with new methods from combinatorial number theory. Before going into details we briefly outline how

2010 Mathematics Subject Classification: 11R27, 11B30, 11P70, 20K01.

Key words and phrases: non-unique factorizations, Narkiewicz constants, zero-sum sequence.

DOI: 10.4064/aa158-3-6

© Instytut Matematyczny PAN, 2013
these studies are embedded into the more general study of the arithmetic of \(\mathcal{O}_K \).

Suppose that \(G \cong C_{n_1} \oplus \cdots \oplus C_{n_r} \) with \(1 < n_1 | \cdots | n_r \). Since \(|G| \geq 2 \), \(\mathcal{O}_K \) is not factorial. The non-uniqueness of factorizations in \(\mathcal{O}_K \) is described by a variety of arithmetical invariants—such as sets of lengths or the catenary degree—and they depend only on the class group \(G \) (the same is true not only for rings of integers but more generally for Krull monoids with finite class group where every class contains a prime divisor). Thus the goal is to determine their precise values in terms of the group invariants \(n_1, \ldots, n_r \), or to describe them in terms of classical combinatorial invariants, such as the Davenport constant or the Erdős–Ginzburg–Ziv constant. Roughly speaking, a good understanding of these combinatorial invariants is restricted to groups of rank at most two, and thus no more can be expected for the more sophisticated arithmetical invariants.

Back to the Narkiewicz constants: A straightforward example shows that \(N_1(G) \geq n_1 + \cdots + n_r \) (see inequality (2.2)), and in 1982 W. Narkiewicz and J. Śliwa conjectured that equality holds. Since on the other hand the Davenport constant \(D(G) \) is a lower bound for \(N_1(G) \) (see inequality (2.1)), the Narkiewicz–Śliwa conjecture, if true, would provide an upper bound for the Davenport constant which is substantially stronger than all bounds known so far. Thus it is not surprising that up to now this conjecture has been validated only for a few classes of groups including cyclic groups, elementary 2-groups and elementary 3-groups ([4, Theorem 6.2.8]).

In this paper we shall determine \(N_1(G) \) for groups of rank two and obtain several related results. Our main results will be presented in the next section (see Theorems 2.3–2.6).

2. Notations and the main results. We denote by \(\mathbb{N} \) the set of positive integers, by \(\mathbb{P} \subseteq \mathbb{N} \) the set of prime numbers, and we write \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \). For real numbers \(a, b \in \mathbb{R} \), we write \([a, b] = \{x \in \mathbb{Z} : a \leq x \leq b\} \). By a monoid, we always mean a commutative semigroup with identity which satisfies the cancelation law (that is, if \(a, b, c \) are elements of the monoid with \(ab = ac \), then \(b = c \) follows).

Let \(H \) be a monoid and \(a, b \in H \). We denote by \(\mathcal{A}(H) \) the set of atoms (irreducible elements) of \(H \) and by \(H^\times \) the set of invertible elements of \(H \). The monoid \(H \) is said to be reduced if \(H^\times = \{1\} \). Let \(H_{\text{red}} = H/H^\times = \{aH^\times : a \in H\} \) be the associated reduced monoid.

A monoid \(F \) is called free (with basis \(P \subseteq F \)) if every \(a \in F \) has a unique representation of the form

\[
a = \prod_{p \in P} p^{v_p(a)} \quad \text{with } v_p(a) \in \mathbb{N}_0 \text{ and } v_p(a) = 0 \text{ for almost all } p \in P.
\]
We set $F = \mathcal{F}(P)$ and call
\[
|a|_F = |a| = \sum_{p \in P} v_p(a)
\]
the length of a. The monoid $Z(H) = \mathcal{F}(A(H_{\text{red}}))$ is the factorization monoid
of H and $\pi: Z(H) \to H_{\text{red}}$ denotes the natural homomorphism given by
mapping a factorization to the element it factorizes. Then the set $Z(a) = \pi^{-1}(aH^\times) \subseteq Z(H)$ is called the set of factorizations of a, and we say that a
has unique factorization if $|Z(a)| = 1$. The set $L(a) = \{ |z| : z \in Z(a) \} \subseteq \mathbb{N}_0$
is called the set of lengths of a.

All abelian groups will be written additively. For $n \in \mathbb{N}$, let C_n denote
a cyclic group with n elements. Let G be an abelian group and $G_0 \subseteq G$
a subset. Then $(G_0) \subseteq G$ is the subgroup generated by G_0, $G_0^\bullet = G_0 \setminus \{0\}$,
and $-G_0 = \{-g : g \in G_0\}$. A family $(e_i)_{i \in I}$ of non-zero elements of G is
to be independent if
\[
\sum_{i \in I} m_i e_i = 0 \quad \text{imply} \quad m_i e_i = 0 \quad \text{for all } i \in I, \quad \text{where } m_i \in \mathbb{Z}.
\]
If $I = [1, r]$ and (e_1, \ldots, e_r) is independent, then we simply say that e_1, \ldots, e_r
are independent elements of G. The tuple $(e_i)_{i \in I}$ is called a basis if $(e_i)_{i \in I}$
is independent and $(\{e_i : i \in I\}) = G$. If $1 < |G| < \infty$, then we have
\[
G \cong C_{n_1} \oplus \cdots \oplus C_{n_r}, \quad \text{and we set} \quad d^*(G) = \sum_{i=1}^r (n_i - 1),
\]
where $r = r(G) \in \mathbb{N}$ is the rank of G, $n_1, \ldots, n_r \in \mathbb{N}$ are integers with
$1 < n_1 | \cdots | n_r$ and $n_r = \exp(G)$ is the exponent of G. If $|G| = 1$, then
$r(G) = 0$, $\exp(G) = 1$, and $d^*(G) = 0$.

The arithmetic of Krull monoids is studied by using two classes of auxiliary
monoids: block monoids (in other words, monoids of zero-sum sequences) and type monoids (see \cite{4} Sections 3.4 and 3.5). We need both concepts for our investigations.

Monoid of zero-sum sequences. Let G be a finite additively written
abelian group.

The elements of the free monoid $\mathcal{F}(G_0)$ are called sequences over G_0. Let
\[
S = \prod_{g \in G_0} g^{v_g(S)}, \quad \text{where } v_g(S) \in \mathbb{N}_0 \text{ for all } g \in G_0
\]
be a sequence over G_0. We call $v_g(S)$ the multiplicity of g in S, and we say
that S contains g if $v_g(S) > 0$. A sequence S_1 is called a subsequence of S
if $S_1 | S$ in $\mathcal{F}(G)$ (equivalently, $v_g(S_1) \leq v_g(S)$ for all $g \in G$). If a sequence
$S \in \mathcal{F}(G_0)$ is written in the form $S = g_1 \cdots g_l$, we tacitly assume that $l \in \mathbb{N}_0$
and \(g_1, \ldots, g_l \in G\). For a sequence
\[
S = g_1 \cdots g_l = \prod_{g \in G_0} g^{\nu_g(S)} \in \mathcal{F}(G_0),
\]
we call \(|S| = l = \sum_{g \in G_0} \nu_g(S) \in \mathbb{N}_0\) the length of \(S\), \(\text{supp}(S) = \{g \in G_0 : \nu_g(S) > 0\} \subset G_0\) the support of \(S\), \(\sigma(S) = \sum_{i=1}^l g_i = \sum_{g \in G_0} \nu_g(S)g \in G\) the sum of \(S\), and \(\Sigma(S) = \{\sum_{i \in I} g_i : \emptyset \neq I \subseteq [1, l]\}\) the set of subsums of \(S\). For \(g \in G\), we set \(g + S = (g + g_1) \cdots (g + g_l) \in \mathcal{F}(G)\).

The sequence \(S\) is called
- a zero-sum sequence if \(\sigma(S) = 0\),
- short (in \(G\)) if \(1 \leq |S| \leq \exp(G)\),
- zero-sum free if there is no non-empty zero-sum subsequence,
- a minimal zero-sum sequence if \(S\) is a non-empty zero-sum sequence and every subsequence \(S'\) of \(S\) with \(1 \leq |S'| < |S|\) is zero-sum free.

We denote by \(\mathcal{B}(G_0) = \{S \in \mathcal{F}(G_0) : \sigma(S) = 0\}\) the monoid of zero-sum sequences over \(G_0\), by \(\mathcal{A}(G_0)\) the set of all minimal zero-sum sequences over \(G_0\) (this is the set of atoms of the monoid \(\mathcal{B}(G_0)\)), and by
\[
\mathcal{D}(G_0) = \sup\{|U| : U \in \mathcal{A}(G_0)\} \in \mathbb{N} \cup \{\infty\}
\]
the Davenport constant of \(G_0\). Every map of abelian groups \(\varphi : G \to H\) extends to a homomorphism \(\varphi : \mathcal{F}(G) \to \mathcal{F}(H)\) by setting \(\varphi(S) = \varphi(g_1) \cdots \varphi(g_l)\). If \(\varphi\) is a homomorphism, then \(\varphi(S)\) is a zero-sum sequence if and only if \(\sigma(S) \in \text{Ker}(\varphi)\).

For many zero-sum problems, the ordering of the elements of a sequence is not important. But when we count the number of subsequences with a given property or consider the so-called unique factorization, we need to grant a sequence an ordering or label. There are two popular ways to label a sequence: one is to introduce the index set as done by Narkiewicz in 1979 ([16]), and the other uses the concept of type as we do in a recent paper [2]. In the present paper we shall use the concept of type which was first introduced by Halter-Koch in 1992 ([6]).

Monoid of zero-sum types. Elements of the free monoid \(\mathcal{F}(G_0 \times \mathbb{N})\) are called types over \(G_0\). Clearly, they are sequences over \(G_0 \times \mathbb{N}\), but we think of them as labeled sequences over \(G_0\) where each element of \(G_0\) carries a positive integer label. Let \(\alpha : \mathcal{F}(G_0 \times \mathbb{N}) \to \mathcal{F}(G_0)\) denote the unique homomorphism satisfying
\[
\alpha((g, n)) = g \quad \text{for all } (g, n) \in G_0 \times \mathbb{N},
\]
and let \(\overline{\sigma} = \sigma \circ \alpha : \mathcal{F}(G_0 \times \mathbb{N}) \to G\). For a type \(T \in \mathcal{F}(G_0 \times \mathbb{N})\), \(\alpha(T) \in \mathcal{F}(G_0)\) is the associated (unlabeled) sequence. We say that \(T\) is a zero-sum type (resp. short, zero-sum free or a minimal zero-sum type) if the associated
sequence has the relevant property, and we set $\Sigma(T) = \Sigma(\alpha(T))$. We denote by

$$T(G_0) = \{ T \in \mathcal{F}(G_0 \times \mathbb{N}) : \sigma(T) = 0 \} = \alpha^{-1}(\mathcal{B}(G_0)) \subseteq \mathcal{F}(G_0 \times \mathbb{N})$$

the monoid of zero-sum types over G_0 (briefly, the type monoid over G_0). Type monoids were introduced by F. Halter-Koch in [8] and applied successfully in the analytic theory of so-called type-dependent factorization properties (see [4] Section 9.1, and [6, 7] for some early papers).

Every map of abelian groups $\varphi : G \to H$ extends to a unique homomorphism $\varphi : \mathcal{F}(G_0 \times \mathbb{N}) \to \mathcal{F}(H \times \mathbb{N})$ satisfying $\varphi((g, n)) = (\varphi(g), n)$ for all $(g, n) \in G_0 \times \mathbb{N}$. We denote by $\overline{\varphi} = \varphi \circ \alpha : \mathcal{F}(G_0 \times \mathbb{N}) \to \mathcal{F}(H)$ the unique homomorphism satisfying $\varphi((g, n)) = \varphi(g)$ for all $(g, n) \in G_0 \times \mathbb{N}$.

Let $\tau : \mathcal{F}(G_0) \to \mathcal{F}(G_0 \times \mathbb{N})$ be defined by

$$\tau(S) = \prod_{g \in G_0} \prod_{k=1}^{v_g(S)} (g, k) \in \mathcal{F}(G_0 \times \mathbb{N}).$$

For $S \in \mathcal{F}(G_0)$, we call $\tau(S)$ the type associated with S. The map $\beta = \alpha|_{\mathcal{T}(G_0)} : \mathcal{T}(G_0) \to \mathcal{B}(G_0)$ is a transfer homomorphism (see [4] Proposition 3.5.5]), and hence in particular $L(B) = L(\tau(B))$ for all $B \in \mathcal{B}(G^*)$. Let T and T' be two squarefree zero-sum types with $\alpha(T) = \alpha(T')$. Then there is a bijection from $\mathbb{Z}(T)$ to $\mathbb{Z}(T')$, and hence $|\mathbb{Z}(T)| = |\mathbb{Z}(T')|$. In particular, $|\mathbb{Z}(T)| = |\mathbb{Z}(\tau(\alpha(T)))|$. Let $T = (g_1, a_1) \cdots (g_l, a_l) \in \mathcal{F}(G \times \mathbb{N})$ be a type. For every $g \in G$, define $(g, 0) + T = (g + g_1, a_1) \cdots (g + g_l, a_l)$.

The greatest common divisor of sequences $S, S' \in \mathcal{F}(G_0)$, denoted by $\gcd(S, S')$, is defined to be the greatest common subsequence of S and S' (i.e. it is always taken in the monoid $\mathcal{F}(G_0)$). The sequences S and S' are called coprime if $\gcd(S, S') = 1$. Similarly, the greatest common divisor of types $T, T' \in \mathcal{F}(G_0 \times \mathbb{N})$, denoted by $\gcd(T, T')$, is defined to be the greatest common subtype of T and T' (i.e. it is always taken in $\mathcal{F}(G_0 \times \mathbb{N})$). The types T and T' are called coprime if $\gcd(T, T') = 1$.

Narkiewicz constants. We start with the definition of the Narkiewicz constants (see [4] Definition 6.2.1]). Theorem 9.3.2 in [4] provides an asymptotic formula for the $F_k(x)$ function—the Narkiewicz constants occur as exponents of the log log x term—in the framework of obstructed quasi-formations (this setting includes non-principal orders in holomorphy rings in global fields).

Definition 2.1. A type $T \in \mathcal{F}(G \times \mathbb{N})$ is called squarefree if $v_{g,n}(T) \leq 1$ for all $(g, n) \in G \times \mathbb{N}$. For every $k \in \mathbb{N}$, the Narkiewicz constant of G is defined by

$$N_k(G) = \sup\{|T| : T \in \mathcal{T}(G^*) \text{ squarefree}, |\mathbb{Z}(T)| \leq k\} \in \mathbb{N}_0 \cup \{\infty\}.$$
If \(U \in \mathcal{A}(G^*) \), then \(\tau(U) \) has unique factorization, and hence
\[
(2.1) \quad D(G) \leq N_1(G).
\]
Let \(G = C_{n_1} \oplus \cdots \oplus C_{n_r} \) with \(1 < n_1 | \cdots | n_r \) and let \((e_1, \ldots, e_r)\) be a basis of \(G \) with \(\text{ord}(e_i) = n_i \) for all \(i \in [1, r] \). Observe that
\[
\text{if } B = \prod_{i=1}^{r} e_i^{n_i}, \text{ then } \tau(B) = \prod_{i=1}^{r} \prod_{k=1}^{n_i} (e_i, k)
\]
has unique factorization, and hence
\[
(2.2) \quad \sum_{i=1}^{r} n_i \leq N_1(G) \leq N_2(G) \leq \cdots.
\]
In [18], W. Narkiewicz and J. Šliwa conjectured that \(N_1(G) \) equals the above lower bound for all finite abelian groups.

We need some other definitions:

Definition 2.2. Let \(G \) be a finite abelian group and \(g \in G \). We denote by
- \(s(G) \) the smallest integer \(l \in \mathbb{N} \) such that every sequence \(S \in \mathcal{F}(G) \) of length \(|S| \geq l \) has a zero-sum subsequence \(T \) of length \(|T| = \exp(G) \); the invariant \(s(G) \) is called the Erdős–Ginzburg–Ziv constant of \(G \);
- \(\eta(G) \) the smallest integer \(l \in \mathbb{N} \) such that every sequence \(S \in \mathcal{F}(G) \) of length \(|S| \geq l \) has a short zero-sum subsequence (equivalently, \(S \) has a short minimal zero-sum subsequence);
- \(\eta^*_g(G) \) the smallest integer \(l \in \mathbb{N} \) such that every sequence \(S \in \mathcal{F}(G^*) \) of length \(|S| \geq l \) and with sum \(\sigma(S) = g \) has two different short minimal zero-sum subsequences \(T_1 \) and \(T_2 \) such that \(1 \neq \gcd(T_1, T_2) \). We set
\[
\eta^*(G) = \max \{ \eta^*_h(G) : h \in G \}.
\]

Now we can state our main results:

Theorem 2.3. Let \(G = C_{n_1} \oplus C_{n_2} \) with \(1 < n_1 | n_2 \). Then
\[
N_1(G) = n_1 + n_2.
\]

Theorem 2.4. Let \(G = C_p \oplus C_p \), where \(p \) is a prime, and let \(T \in \mathcal{F}(G^* \times \mathbb{N}) \) be a squarefree type of length \(|T| = 2p \). If \(T \) does not have two minimal zero-sum subtypes which are not coprime, then there exists a basis \((e_1, e_2)\) of \(G \) such that
\[
\alpha(T) = e_1^p \prod_{i=1}^{p} (a_i e_1 + e_2),
\]
where \(\sum_{i=1}^{p} a_i \equiv 0 \pmod{p} \).
Theorem 2.5. Let \(G = C_p \oplus C_p \), where \(p \) is a prime. Let \(S \in \mathcal{F}(G^* \times \mathbb{N}) \) be a squarefree type of length \(|S| = 3p\). If \(S \) does not have two short minimal zero-sum subtypes which are not coprime, then there exists a basis \((e_1, e_2)\) of \(G \) and \(a_1, a_2 \in [1, p - 1] \) such that \(\alpha(S) = e_1^p e_2^p (a_1 e_1 + a_2 e_2)^p \).

Theorem 2.6. Let \(G = C_n \oplus C_n \), where \(n \) is a positive integer. Then \(\eta^*(G) = 3n + 1 \).

3. Preliminaries. In this section we first gather some known results needed in this paper, and then we employ group algebra as a tool to derive a result on subsequence sums (see Theorem 3.12), which will be crucial in the proof of Theorem 2.4 and might be of independent interest.

Lemma 3.1 ([4, Theorem 5.8.3]). Let \(G = C_{n_1} \oplus C_{n_2} \) with \(1 \leq n_1 \mid n_2 \). Then
\[
s(G) = 2n_1 + 2n_2 - 3, \quad \eta(G) = 2n_1 + n_2 - 2, \quad D(G) = n_1 + n_2 - 1.
\]

Lemma 3.2 ([4, Proposition 5.7.7]). Let \(G = C_p \oplus C_p \), where \(p \) is a prime. Suppose \(S \in \mathcal{F}(G) \) is a sequence with \(|S| \geq 3p - 2\). Then \(S \) has a zero-sum subsequence \(T \in \mathcal{F}(G) \) of length \(|T| \in \{p, 2p\}\).

Lemma 3.3 ([2, Lemma 2.2]). Let \(G \) be an abelian group with \(|G| > 1\) and \(T \in \mathcal{T}(G^*) \) be a squarefree zero-sum type. Then the following statements are equivalent:

(a) \(|Z(T)| = 1\).
(b) If \(U, V \in \mathcal{T}(G) \) with \(U \mid T \) and \(V \mid T \), then \(\gcd(U, V) \) has sum zero.

Lemma 3.4 ([2, Lemma 3.9]). Let \(G \) be a finite abelian group with \(|G| > 1\), and let \(T = U_1 \cdots U_r \in \mathcal{T}(G^*) \) be a squarefree type with \(r \in \mathbb{N} \) and \(U_1, \ldots, U_r \in \mathcal{A}(\mathcal{T}(G^*)) \).

1. If \(|Z(T)| = 1\), then \(\prod_{i=1}^r |U_i| \leq |G| \).
2. Let \(S_1, \ldots, S_t \in \mathcal{F}(G \times \mathbb{N}) \) be such that \(S_1 \cdots S_t \) is a zero-sum subtype of \(T \). If \(|Z(T)| = 1\), then \(\tau(\bar{\sigma}(S_1) \cdots \bar{\sigma}(S_t)) \) has unique factorization.
3. If \(T \) does not have two short minimal zero-sum subtypes which are not coprime and \(|T| \leq 2 \exp(G) + 1\), then \(|Z(T)| = 1\).

Lemma 3.5 ([3, Theorem 1.2]). \(N_1(C_p \oplus C_p) = 2p \), where \(p \) is a prime.

We need the following well known result:

Lemma 3.6. If \(S \) is a minimal zero-sum sequence over \(C_n \) of length \(|S| = n\), then \(S = g^n \) for some \(g \in C_n \).

Lemma 3.7 ([2, Theorem 3.14(a)]). Let \(G = C_{mn} \oplus C_{mn} \) with \(n, m \geq 2 \). If \(\eta^*(C_n \oplus C_m) = 3m + 1 \) and \(\eta^*(C_n \oplus C_n) = 3n + 1 \) then \(\eta^*(C_{mn} \oplus C_{mn}) = 3mn + 1 \).
Lemma 3.8 ([3, Lemma 4.4]). Let $G = C_{n_1p} \oplus C_{n_2p}$ with $1 \leq n_1 | n_2$ and p being a prime. Suppose that $N_1(C_{n_1} \oplus C_{n_2}) = n_1 + n_2$ for $n_1 > 1$, and suppose that $\eta^*(C_p \oplus C_p) = 3p + 1$. Then $N_1(G) = n_1p + n_2p$.

Remark 3.9. If $n_1 = 1$ then $N_1(C_{n_1} \oplus C_{n_2}) = N_1(C_{n_2}) = n_2$ has been proved by Narkiewicz [16] (see also [4, Theorem 6.2.8] or [2, Theorem 5.1]). In [3], Lemma 3.8 is stated only for $n_1 > 1$, but the proof given there works also for $n_1 = 1$.

Let F be a field, and let G be a finite abelian group. The group algebra $F[G]$ of G over F is a free F-module with basis $\{X^g : g \in G\}$ (built with a symbol X), where multiplication is defined by

$$
\left(\sum_{g \in G} a_g X^g\right) \left(\sum_{g \in G} b_g X^g\right) = \sum_{g \in G} \left(\sum_{h \in G} a_h b_{g-h}\right) X^g.
$$

Let p be a prime. From now on, let $F = F_p$ be the finite field of p elements. Let G be a finite abelian p-group. For any non-empty sequence $S = g_1 \ldots g_l \in \mathcal{F}(G)$, we define

$$
\Pi(S) = \prod_{i=1}^{l} (1 - X^{g_i}) = \prod_{g \in G} (1 - X^g)^{\nu_g(S)} \in F_p[G],
$$

$$
H_S = \{g \in G : (1 - X^g)\Pi(S) = 0 \in F_p[G]\}.
$$

Then H_S is a subgroup of G.

Lemma 3.10. Let p be a prime, G be a finite abelian p-group, and let $S \in \mathcal{F}(G^*)$.

1. If $|S| \geq D(G)$ then $\Pi(S) = 0 \in F_p[G]$.
2. If $|S| = D(G) - 1$ and $\Pi(S) \neq 0$ then $G^* \subseteq \Sigma(S)$.
3. If $H_S = G$ and $\Pi(S) \neq 0$ then $G^* \subseteq \Sigma(S)$.
4. If $|S| = D(G) - 2$ and $\Pi(S) \neq 0$ then there exists $h \in G$ such that $G^* \setminus \Sigma(S) \subseteq h + H_S$.

Proof. Let

$$
\Pi(S) = \sum_{g \in G} a_g X^g.
$$

1. See [19] or [4, Proposition 5.5.8].
2. See [4, Proposition 5.5.8].
3. If $H_S = G$ then for any $h \in G$ we have $(1 - X^h)\sum_{g \in G} a_g X^g = \sum_{g \in G} (a_g - a_{g-h}) X^g = 0$. It follows that $a_0 = a_{-h}$ for every $h \in G$. Thus $\alpha = a_0 \sum_{g \in G} g \neq 0$. This implies that $G^* \subseteq \Sigma(S)$.
4. We only need to prove that for any $h_1, h_2 \in G^* \setminus \Sigma(S)$, $h_1 - h_2 \in H_S$. If $h_1 - h_2 \not\in H_S$, then $(1 - X^{h_1-h_2})\Pi(S) \neq 0$ and $|(h_1 - h_2)S| = D(G) - 1$.

By (3), $G^* \subseteq \sum (h_1 - h_2)S$. So there exists a subsequence $T | S$ such that $h_1 = (h_1 - h_2) + \sigma(T)$. It follows that $h_2 = \sigma(T) \in \Sigma(S)$, a contradiction. \hfill

Let p be a prime, and let $G = C_p \oplus C_p$. Let $S \in \mathcal{F}(G)$ and let $A \subseteq G$. Define

- S_A to be the maximal subsequence of S such that $\text{supp}(S_A) \subseteq A$;
- $\lambda(S) = \max\{|S_H| : H$ is a subgroup of G of order $p\}$;
- $\Lambda(S) = |\{H : H$ is a subgroup of G of order p and $S_H \neq 1\}|$.

Lemma 3.11 ([20, Theorem 1]). Let $G = C_p \oplus C_p$ and $S \in \mathcal{F}(G^*)$ with $p \leq |S| \leq 2p - 2$. If $\lambda(S) \leq p - 1$ and $\Lambda(S) \leq 2p - 1 - |S|$, then $\Pi(S) \neq 0 \in F_p[G]$.

Theorem 3.12. Let p be a prime, $G = C_p \oplus C_p$, and let $S \in \mathcal{F}(G^*)$ with $|S| = 2p - 2$. If $\lambda(S) \leq p - 1$ then there exists $g \in G$ such that $G \setminus \{g\} \subseteq \Sigma(S)$.

Proof. Let

$$S = a_1 \cdots a_{2p-2}.$$
Assume to the contrary that $G^* \setminus \{g\} \not\subseteq \Sigma(S)$ for every $g \in G$. It follows that

$$G^* \not\subseteq \Sigma(S).$$

Let $\Lambda(S) = t$ with $1 \leq t \leq p + 1$. By renumbering if necessary we assume that

$$a_1, \ldots, a_t$$
are in distinct cyclic subgroups of G.

Let $S_0 = S(a_1 \cdots a_t)^{-1}$. Then $\lambda(S_0) \leq \lambda(S) \leq p - 1$ and $\Lambda(S_0) \leq t = 2p - 2 - |S_0| < 2p - 1 - |S_0|$. By Lemma 3.11, $\prod_{g|S_0} (1 - X^g) \neq 0$. Let S_1 be the maximal subsequence of S such that $S_0 | S_1$ and $\prod_{g|S_1} (1 - X^g) \neq 0$.

If $|S_1| = 2p - 2$, then $G^* \subseteq \Sigma(S_1) \subseteq \Sigma(S)$ by Lemma 3.10, a contradiction.

If $|S_1| \leq 2p - 4$, then there exist a_i, a_j with $1 \leq i < j \leq t$ such that $(1 - X^{a_i}) \prod_{g|S_1} (1 - X^g) = (1 - X^{a_j}) \prod_{g|S_1} (1 - X^g) = 0$. Therefore, $G = \langle a_i, a_j \rangle \subseteq H_{S_1} \subseteq G$. Hence, $H_{S_1} = G$. It follows from Lemma 3.10 that $G^* \subseteq \Sigma(S_1) \subseteq \Sigma(S)$, again a contradiction. Therefore, $|S_1| = 2p - 3$.

By renumbering if necessary we can assume that $S = S_1 a_1$. Since $D(G) - 2 = 2p - 3$, $G^* \not\subseteq \Sigma(S)$ and $a_1 \in H_{S_1}$, it follows from Lemma 3.10 that there exists $h_1 \in G$ such that $G^* \setminus \Sigma(S_1) \subseteq h_1 + \langle a_1 \rangle$.

Let $S'_0 = S(a_2, \ldots, a_t)^{-1}$. Then $\lambda(S'_0) \leq \lambda(S) \leq p - 1$ and $\Lambda(S'_0) \leq t = 2p - 2 - |S'_0| + 1 = 2p - 1 - |S'_0|$. By Lemma 3.11, $\prod_{g|S'_0} (1 - X^g) \neq 0$.

Non-unique factorizations

279

[Non-unique factorizations 279]
Let S'_1 be the maximal subsequence of S such that $S'_0 | S'_1$ and $\prod_{g \in S'_1}(1 - X^g) \neq 0$. In a similar way to above we deduce that $|S'_1| = 2p - 3$ and there exists $h_2 \in G$ such that $G^* \setminus \Sigma(S_1) \subseteq h_2 + \langle a_i \rangle$ for some $i \in [2, t]$.

Since $1 \neq i$ we have $|h_1 + \langle a_1 \rangle \cap h_2 + \langle a_i \rangle| = 1$. Let $h_1 + \langle a_1 \rangle \cap h_2 + \langle a_i \rangle = \{g\}$. Then

$$G^* \setminus \Sigma(S) \subseteq h_1 + \langle a_1 \rangle \cap h_2 + \langle a_i \rangle = \{g\}.$$

Since $\prod_{g \in S}(1 - X^g) = 0$, we have $0 \in \Sigma(S)$. This together with (3.1) gives $G \setminus \{g\} \subseteq \Sigma(S)$. ■

4. Proofs of the main results. In this section we first generalize the concept of unique factorization to any squarefree type (not necessarily zero-sum).

Definition 4.1. Let G be an abelian group with $|G| > 1$ and $T \in \mathcal{F}(G^* \times \mathbb{N})$ be a squarefree type. We say T has *unique factorization* if there is only one way to write T in the form $T = U_1 \cdots U_r U'$, where U_1, \ldots, U_r are all minimal zero-sum types and U' is zero-sum free.

We have the following result similar to Lemma 3.3.

Lemma 4.2. Let G be an abelian group with $|G| > 1$ and $T \in \mathcal{F}(G^* \times \mathbb{N})$ be a squarefree type. Then the following statements are equivalent:

(a) T has unique factorization.
(b) If $U, V \in \mathcal{T}(G)$ with $U \mid T$ and $V \mid T$, then $\gcd(U, V)$ has sum zero.

Lemma 4.3. Let G be a finite abelian group and let $T \in \mathcal{F}(G^* \times \mathbb{N})$ be a squarefree type of length $|T| = N_1(G)$. If T has unique factorization then T is zero-sum.

Proof. If $\sigma(\alpha(T)) \neq 0$, there exists a squarefree type $T_1 \in \mathcal{T}(G^*)$ such that $T_1 = Tw$, where $w \in G^* \times \mathbb{N}$ and $\alpha(w) = -\sigma(\alpha(T))$. Since $|T_1| > N_1(G)$, T_1 have two distinct factorizations:

$$T_1 = Z_1 \cdots Z_r X_1 \cdots X_u = Z_1 \cdots Z_r Y_1 \cdots Y_v$$

where Z_i, X_i, Y_k are all minimal zero-sum types, $X_i \neq Y_j$ for all $i \in [1, u]$ and $j \in [1, v]$, and $u, v \geq 2$. So $X_1 \cdots X_u = Y_1 \cdots Y_v$. It follows that there exist X_i and Y_j with $w \nmid X_i, w \nmid Y_j$ such that $\gcd(X_i, Y_j) \neq 1$, contradicting Lemma 4.2. ■

We also need the following easy result.

Lemma 4.4. Let $G = C_n$ with $n \neq 4$, and let $T \in \mathcal{F}(G^* \times \mathbb{N})$ be a squarefree type of length $|T| = n$. If T has unique factorization then there exists $g \in G$ such that $\alpha(T) = g^n$.

Proof. By Lemma 4.3 we know that $T \in \mathcal{T}(G^\bullet)$. If T is a minimal zero-sum type then the result follows from Lemma 3.6. Otherwise $n \geq 5$ and $T = X_1 \cdots X_u$ with $u \geq 2$ and all X_i being minimal zero-sum subtypes of length not less than two. It follows that $|X_1| \cdots |X_u| > n$, contradicting Lemma 3.4.

Proof of Theorem 2.4. We distinguish two cases:

Case 1: $\lambda(\alpha(T)) \geq p$. There exists a subtype $T_1 \mid T$ of length $|T_1| = p$ such that $\alpha(T_1)$ is a zero-sum sequence over some subgroup H of G with $H \cong C_p$. Since T_1 has unique factorization, by Lemma 4.4 there exists $e_1 \in G^\bullet$ such that $\alpha(T_1) = e_1^p$. Now T_1 is a minimal zero-sum subtype of T of length $|T_1| = p$. From Lemma 3.4 we infer that TT_1^{-1} is also a minimal zero-sum type of T. We can assume that

$$\alpha(T) = e_1^p \prod_{i=1}^{p} (a_i e_1 + b_i e_2)$$

for some basis (e_1, e_2) of G.

If $b_1 \cdots b_p$ is a minimal zero-sum sequence over C_p then $b_1 = \cdots = b_p$ by Lemma 3.6. Let $e_2' = b_1 e_2$. Then (e_1, e_2') is also a basis of G and $\alpha(T)$ has the desired form with the basis (e_1, e_2'). So, we may assume that $b_1 \cdots b_p$ is not minimal zero-sum. Then there is a subset $I \subseteq [1, p]$ such that $\sum_{i \in I} b_i = 0$ and $1 \leq |I| < p$. Since TT_1^{-1} is a minimal zero-sum type, we have $\sum_{i \in I} a_i \neq 0 \in C_p$. Therefore,

$$e_1^{p - \sum_{i \in I} a_i} \prod_{i \in I} (a_i e_1 + b_i e_2)$$

is a zero-sum subsequence of $\alpha(T)$ and $p - \sum_{i \in I} a_i \in [1, p - 1]$. So we can find two zero-sum subtypes W_1 and W_2 of T such that $\alpha(W_1) = \alpha(W_2) = e_1^{p - \sum_{i \in I} a_i} \prod_{i \in I} (a_i e_1 + b_i e_2)$ and $\alpha(\gcd(W_1, W_2)) = e_1$ is not zero-sum, a contradiction.

Case 2: $\lambda(\alpha(T)) \leq p - 1$. Let T_2 be a minimal zero-sum subtype of T. It follows from $\lambda(\alpha(T)) \leq p - 1$ that $|\supp(\alpha(T_2))| \geq 2$. Let $a, b \in G^\bullet \times \mathbb{N}$ be such that $ab \mid T_2$ and $\alpha(a) \neq \alpha(b)$. Since $|\alpha(T(ab)^{-1})| = 2p - 2$, from $\lambda(\alpha(T(ab)^{-1})) \leq p - 1$ and Theorem 3.12 $-\alpha(a) \in \Sigma(\alpha(T(ab)^{-1}))$ or $-\alpha(b) \in \Sigma(\alpha(T(ab)^{-1}))$. Without loss of generality, we can assume that $-\alpha(a) \in \Sigma(\alpha(T(ab)^{-1}))$. It follows that there exists a minimal zero-sum subtype T_3 such that $a \mid T_3$ and $b \not\mid T_3$, a contradiction.

Proof of Theorem 2.5. Clearly a subtype of S does not have two short minimal zero-sum subtypes which are not coprime. Since $|S| = 3p > 3p - 2$, by Lemma 3.2 S has a zero-sum subtype $T \in \mathcal{T}(G^\bullet)$ of length $|T| \in \{p, 2p\}$. We distinguish two cases.
Case 2: S has a zero-sum subtype $T \in \mathcal{T}(G^*)$ of length $|T| = 2p$. Since T does not have two short minimal zero-sum subtypes which are not coprime, by Theorem 2.4, $T = T_1T_2$, where T_1, T_2 are minimal zero-sum subtypes of length p.

Choose $x, y \in G^* \times \mathbb{N}$ with $x \mid T_1$ and $y \mid T_2$. Since $|Sx^{-1}y^{-1}| = 3p - 2$, by Lemma 3.2, $Sx^{-1}y^{-1}$ has a zero-sum subtype $T' \in \mathcal{T}(G^*)$ of length $|T'| \in \{p, 2p\}$.

If $|T'| = 2p$, then again by Theorem 2.4 we know that $T' = T_1'T_2'$ with T_1', T_2' minimal zero-sum subtypes of length p. So $T_1T_2T_1'T_2' \mid S$, yielding a contradiction.

If $|T'| = p$, then $\gcd(T_1, T') = \gcd(T_2, T') = 1$. Thus $S = T_1T_2T'$. Since T_1T_2, T_1T' and T_2T' are zero-sum subtypes of length $2p$, by using Theorem 2.4 repeatedly, we infer that there exists a basis (e_1, e_2) of G such that $\alpha(S) = e_1e_2^p \prod_{i=1}^p (a_i e_1 + b_ie_2)^p$. Now in a similar way to the proof of Theorem 2.4 we deduce that $a_1 = \cdots = a_p$ and $b_1 = \cdots = b_p$.

Case 2: S does not have a zero-sum subtype of length $2p$. Let T_1, \ldots, T_r be all zero-sum subtypes of S of length p. We show next that

$$\gcd(T_1, \ldots, T_r) = 1.\tag{4.1}$$

Assume to the contrary that $x \mid \gcd(T_1, \ldots, T_r)$ for some $x \in G^* \times \mathbb{N}$. Consider Sx^{-1}. Since $|Sx^{-1}| = 3p - 1$, by Lemma 3.2 we deduce Sx^{-1} has a zero-sum subtype $T' \in \mathcal{T}(G^*)$ of length $|T'| \in \{p, 2p\}$. Since S does not have a zero-sum subtype of length $2p$, we get $|T'| = p$. But T' is different from all of T_1, \ldots, T_r, a contradiction since T_1, \ldots, T_r are all the zero-sum subtypes of S of length p. This proves that $\gcd(T_1, \ldots, T_r) = 1$. It follows that

$$r \geq 2.$$

Clearly $|Z(T_1)| = \cdots = |Z(T_r)| = 1$. Since S does not have a zero-sum subtype of length $2p$, we infer that $|\gcd(T_i, T_j)| \neq 1$ for all $i, j \in [1, r]$. Therefore,

$$\gcd(T_i, T_j)$$

is a nonempty zero-sum type for all $i, j \in [1, r]$. This together with $r \geq 2$ shows that no T_i is a minimal zero-sum type. Hence,

$$p \geq 5.$$

If $p = 5$, then $T_i = X_1^{(i)}X_2^{(i)}$ for each $i \in [1, r]$, where $|X_1^{(i)}| = 2$, $|X_2^{(i)}| = 3$, and $X_1^{(i)}, X_2^{(i)}$ are both minimal zero-sum types. From (4.1) we know that there exist $i, j \in [1, r]$ such that $X_1^{(i)} \neq X_1^{(1)}$ and $X_2^{(j)} \neq X_2^{(2)}$. So $X_1^{(1)}X_1^{(i)}X_2^{(1)}X_2^{(j)}$ is a zero-sum type of T of length $10 = 2 \times 5$, a contradiction.
Let $p = 7$. If there exists $T_i = X_1X_2$ such that $|X_1| = 2$, $|X_2| = 5$, where X_1, X_2 are minimal zero-sum types, then from (4.1) we know that there exists $T_j = X_1X_3$ such that $\gcd(T_j, X_2) = 1$, where X_3 is a zero-sum type. Let $W = X_1X_2X_3$; then $|Z(W)| = 1$ by Lemma 3.4. But $|X_1|X_2|X_3| = 50 > 49$, contradicting Lemma 3.4.

Otherwise, for every i, $T_i = X_1^{(i)}X_2^{(i)}$, where $|X_1^{(i)}| = 3$, $|X_2^{(i)}| = 4$, $X_1^{(i)}$ is a minimal zero-sum type and $X_2^{(i)}$ is a zero-sum type. If $X_2^{(i)}$ is a minimal zero-sum type for each $i \in [1, r]$, then similarly to the case of $p = 5$ we infer that there exist $i, j \in [1, r]$ such that $X_1^{(i)} \neq X_1^{(1)}$ and $X_2^{(j)} \neq X_1^{(2)}$. So $X_1^{(1)}X_2^{(1)}X_2^{(j)}$ is a zero-sum type of T of length $14 = 2 \cdot 7$, a contradiction.

So $X_2^{(i)} = Y_1Y_2$ for some $i \in [1, r]$, where $|Y_1| = |Y_2| = 2$, and both Y_1 and Y_2 are minimal zero-sum types. Without loss of generality, we assume that $i = 1$. From (4.1) we know that there exists some $i \in [1, r]$ such that $X_1^{(i)} \neq X_1^{(1)}$. If there is $j \in [2, r]$ such that $X_2^{(j)}$ is a minimal zero-sum type, then $X_1^{(1)}Y_1Y_2X_1^{(i)}X_2^{(j)}$ is a zero-sum type of length $14 = 2 \cdot 7$, a contradiction.

Therefore, for every $j \in [2, r]$, $X_2^{(j)}$ is a product of two minimal zero-sum types each of length two. Again from (4.1) we know that there exists $j \in [2, r]$ such that T_j has a minimal zero-sum subtype Z with $|Z| = 2$ and $\gcd(Z, T_1) = 1$. So $T_1X_1^{(i)}Z = X_1^{(1)}Y_1Y_2X_1^{(i)}Z$ has unique factorization by Lemma 3.4. But $|X_1^{(1)}| |Y_1| |Y_2| |X_1^{(i)}| |Z| = 72 > 49$, a contradiction. Hence we can assume that

\[p \geq 11. \]

Subcase 2.1: There exists $i \in [1, r]$ such that T_i has a minimal zero-sum subtype X_1 with $|X_1| \geq (p + 1)/2$. From (4.1) we know that there exists some $j \in [1, r] \setminus \{i\}$ such that $\gcd(T_j, X_1) = 1$. It follows that $|\gcd(T_i, T_j)| \leq (p - 1)/2$. Let $T_i = A_1 \cdots A_sX_1 \cdots X_u$ and $T_j = A_1 \cdots A_tY_1 \cdots Y_v$, where $A_1, \ldots, A_t, X_1, \ldots, X_u, Y_1, \ldots, Y_v$ are different minimal zero-sum subtypes of S. Let

\[T = A_1 \cdots A_tX_1 \cdots X_uY_1 \cdots Y_v. \]

Clearly $|T| < 2p$. Since T does not have two short minimal zero-sum subtypes which are not coprime, by Lemma 3.4(3) we infer that $|Z(T)| = 1$. Since $p \geq 11$ and $2 \leq |A_1| + \cdots + |A_t| \leq (p - 1)/2$, it follows from Lemma 3.4(1) that

\[p^2 \geq |A_1| \cdots |A_t| |X_1| \cdots |X_u||Y_1| \cdots |Y_v| \geq (|A_1| + \cdots + |A_t|)(|X_1| + \cdots + |X_u|)(|Y_1| + \cdots + |Y_v|) = (|A_1| + \cdots + |A_t|)(p - (|A_1| + \cdots + |A_t|))^2 \geq 2(p - 2)^2 > p^2, \]

a contradiction.
Subcase 2.2: For every $i \in [1, r]$ and every minimal zero-sum subtype X of T_i, we have $|X| \leq (p - 1)/2$. Since $|T_1| = p$ and p is an odd prime, we infer that T_1 contains a minimal zero-sum subtype X_1 of length $|X_1| \geq 3$. From (4.1) we know that there exists some $i \in [2, r]$ such that $\gcd(T_i, X_1) = 1$. It follows that $|\gcd(T_1, T_i)| \leq p - 3$. Let $T_1 = A_1 \cdots A_t X_1 \cdots X_u$ and $T_i = A_1 \cdots A_t Y_1 \cdots Y_v$, where $A_1, \ldots, A_t, X_1, \ldots, X_u, Y_1, \ldots, Y_v$ are different minimal zero-sum subtypes of S. Let

$$T = A_1 \cdots A_t X_1 \cdots X_u Y_1 \cdots Y_v.$$

Clearly $|T| < 2p$. Since T does not have two short minimal zero-sum subtypes which are not coprime, by Lemma 3.4(3) we infer that $|Z(T)| = 1$. By Lemma 3.4(1),

$$p^2 \geq |A_1| \cdots |A_t| \ |X_1| \cdots |X_u| \ |Y_1| \cdots |Y_v| \geq |A_1| \cdots |A_t| \ |X_1| \ |X_2| \cdots |X_u| ((|Y_1| + \cdots + |Y_v|)) = |A_1| \cdots |A_t| \ |X_1| \ |X_2| \cdots |X_u| (|X_1| + \cdots + |X_u|) \geq \left\{ \begin{array}{ll} 3 \cdot \frac{p - 1}{2} \cdot \frac{p - 5}{2} \cdot 3 > p^2 & \text{if } |X_1| + \cdots + |X_u| = 3 \text{ and } p \geq 11, \\
2 \cdot \frac{p - 1}{2} \cdot \frac{p - 3}{2} \cdot 4 > p^2 & \text{if } |X_1| + \cdots + |X_u| > 3 \text{ and } p \geq 11, \end{array} \right.$$

yielding a contradiction. ■

Proof of Theorem 2.6. By Lemma 3.7, it suffices to show that the theorem is true for $n = p$ a prime. This follows from Theorem 2.5. ■

Proof of Theorem 2.3. Since $N_1(C_1 \oplus C_n) = N_1(C_n) = n$ for every integer n and $N_1(C_p \oplus C_p) = 2p$ for every prime number p, the result follows from Theorem 2.6 and Lemma 3.8 by induction. ■

Acknowledgements. We would like to thank the referee for his/her very useful suggestions. This work has been supported by the PCSIRT Project of the Ministry of Science and Technology, and the National Science Foundation of China.

References

Non-unique factorizations

Weidong Gao, Qinghai Zhong
Center for Combinatorics
Nankai University
Tianjin 300071, P.R. China
E-mail: wdgao_1963@yahoo.com.cn
zhongqinghai@yahoo.com.cn

Jiangtiao Peng
College of Science
Civil Aviation University of China
Tianjin 300300, P.R. China
E-mail: jtpeng1982@yahoo.com.cn

Received on 6.8.2012
and in revised form on 19.1.2013