
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Number Theory 131 (2011) 1864–1874

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt
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Let G be a finite abelian group. The Erdős–Ginzburg–Ziv constant
s(G) of G is defined as the smallest integer l ∈ N such that every
sequence S over G of length |S| � l has a zero-sum subsequence T
of length |T | = exp(G). If G has rank at most two, then the precise
value of s(G) is known (for cyclic groups this is the theorem of
Erdős–Ginzburg–Ziv). Only very little is known for groups of higher
rank. In the present paper, we focus on groups of the form G = Cr

n ,
with n, r ∈ N and n � 2, and we tackle the study of s(G) with a
new approach, combining the direct problem with the associated
inverse problem.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and main result

Let G be an additive finite abelian group. We denote by

• D(G) the smallest integer l ∈ N such that every sequence S over G of length |S| � l has a non-
empty zero-sum subsequence.

• s(G) the smallest integer l ∈ N such that every sequence S over G of length |S| � l has a zero-sum
subsequence T of length |T | = exp(G).

Then D(G) is called the Davenport constant and s(G) the Erdős–Ginzburg–Ziv constant of G . These
are classical invariants in the Combinatorial Number Theory, and their precise values are known for
groups with rank at most two. Indeed, we have (see [15, Theorem 5.8.3])
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Theorem A. Let G = Cn1 ⊕ Cn2 with 1 � n1|n2 . Then

D(G) = n1 + n2 − 1 and s(G) = 2n1 + 2n2 − 3.

The result for D(G) dates back to the 1960s, and the special case n1 = 1 and s(Cn2 ) = 2n2 − 1 is
the well-known theorem of Erdős–Ginzburg–Ziv proved in 1961 [6]. However, the special case where
n1 = n2 is a prime was only settled in 2007 by C. Reiher [19]. More information can be found in
the surveys [9,13]. Both the Davenport constant and the Erdős–Ginzburg–Ziv constant have found far
reaching generalizations, and for these generalized versions, the precise values have been determined
for groups with rank at most two (see [15, Section 6.1], [7], [14, Theorem 5.2], [17]).

The situation is very different for groups of higher rank. Even for the group G = Cn ⊕ Cn ⊕ Cn with
n � 2, the precise value of the Davenport constant is unknown (for general n) and the same is true for
the Erdős–Ginzburg–Ziv constant. In what follows, we focus our discussion on the Erdős–Ginzburg–
Ziv constant, which will be the main topic of the present paper. In 1995, N. Alon and M. Dubiner
[1] proved that for every positive integer r there is a constant c(r) depending only on r such that
s(Cr

n) � c(r)n for all n � 2. To illustrate the difficulties for obtaining precise values, let us consider
the special case G = Fr

3, where F3 is the finite field with three elements. Then (s(G) − 1)/2 equals
the maximal size of a cap in the affine space Fr

3. The maximal size of such caps has been studied
in finite geometry for decades, and the precise value is known so far only for r � 6 (see [18,2]). The
connection to affine caps will be addressed in greater detail in Section 4. In the next theorem, we
gather the cases where precise values for s(G) are known (more on upper and lower bounds will be
given in Section 2).

Theorem B. Let G be a finite abelian group, n, r positive integers, and a, b nonnegative integers.

• If G = C2a ⊕Cr−1
2b where r � 2, b � 1 and a ∈ [1,b], then s(G) = 2r−1(2a +2b −2)+1 [3, Corollary 4.4].

• s(C3
3a5b ) = 9(3a5b − 1) + 1, where a + b � 1 [11, Theorem 1.7].

• s(C4
3a ) = 20(3a − 1)+ 1, where a � 1 (the precise value for s(C4

3) was found independently several times,
see [3, Section 5]; then use [3, Theorems 1.3 and 1.4]).

• s(C5
3) = 91 and s(C6

3) = 225 (see [4, Theorem 1.2], [18, Theorem 16] and Proposition 4.1).
• s(C3

3×2a ) = 8(3 × 2a − 1) + 1, where a � 1 [11, Theorem 1.8].
• If G is a p-group for some odd prime p with D(G) = 2 exp(G) − 1, then s(G) = 4 exp(G) − 3 [21, Theo-

rem 1.2].
• If there exists some odd q ∈ P such that D(Gq)−exp(Gq)+1|exp(Gq) and G p is cyclic for each p ∈ P\{q},

then s(G) = 2(D(Gq)− exp(Gq))+ 2 exp(G)− 1 ([14, Theorem 4.2]; G p denotes the p-Sylow subgroup
of G).

This shows that precise results for s(G) are extremely sparse (a few more precise results and upper
bounds for groups G which are not of the form Cr

n can be found in [3,14]). In the present paper, we
focus on groups of the form G = Cr

n , with n, r ∈ N and n � 2, and we tackle the study of s(G) with a
new approach, combining the direct problem with the associated inverse problem. We outline this in
the next paragraph.

Let G = Cr
n with n, r ∈ N and n � 2. The inverse problem associated with s(G) asks for the struc-

ture of sequences of length s(G) − 1 that do not have a zero-sum subsequence of length n. The
standing conjecture is that every group of above form satisfies the following Property D (see [9, Con-
jecture 7.2]).

Property D. Every sequence S over G of length |S| = s(G) − 1 that has no zero-sum subsequence of length n
has the form S = T n−1 for some sequence T over G.

In the case r = 2, Property D was first studied by the second author in [8], and only recently
W.A. Schmid completely determined the structure of the sequences having Property D (it was even
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done for general groups of rank two; see [20, Theorem 3.1]). A detailed overview of Property D and
its relationship with further inverse problems can be found in the survey paper [13, Section 5].

Suppose that G = Cr
n satisfies Property D. Then s(G) = c(n − 1) + 1 where c = |T |, and we say that

G satisfies Property D with respect to c. If s(G) = c(n − 1) + 1 for some c ∈ N, then G satisfies the
following Property D0.

Property D0. (With respect to some c ∈ N.) Every sequence S over G of the form S = gT n−1 has a zero-sum
subsequence of length n, where g ∈ G and T is a sequence of length |T | = c.

Now we can state our main result.

Theorem 1.1. Suppose that Cr
m has Property D with respect to c and that Cr

n has Property D0 with respect to c,
where m,n, r, c ∈ N. If s(Cr

n) � c(n − 1) + n + 1,

n � (c − 1)2 + 1 and m � (c(n − 1) + n)(n − 1)(nr − (c − 1)) − (c − 1)2

n − (c − 1)2
,

then

s
(
Cr

mn

)
� c(mn − 1) + 1.

The proof of Theorem 1.1 will be given in Section 3. After the proof we will discuss how to apply
Theorem 1.1, and we will provide an explicit list of groups satisfying the assumptions of Theorem 1.1.
For all of them we will get that s(Cr

mn) = c(mn − 1) + 1.

2. Preliminaries

Our notation and terminology are consistent with [9] and [13]. We briefly gather some key notions
and fix the notation concerning sequences over finite abelian groups. Let N denote the set of positive
integers, P ⊂ N the set of prime numbers and N0 = N ∪ {0}. For real numbers a,b ∈ R, we set [a,b] =
{x ∈ Z | a � x � b}. Throughout this article, all abelian groups will be written additively, and for n ∈ N,
we denote by Cn a cyclic group with n elements.

Let G be a finite abelian group and exp(G) its exponent. A sequence S over G will be written in
the form

S = g1 · . . . · gl =
∏
g∈G

gvg(S), with vg(S) ∈ N0 for all g ∈ G,

and we call

|S| = l ∈ N0 the length and σ(S) =
l∑

i=1

gi =
∑
g∈G

vg(S)g ∈ G the sum of S.

The sequence S is called a zero-sum sequence if σ(S) = 0. For every element g ∈ G , we set g + S =
(g + g1) · . . . · (g + gl). Every map of abelian groups ϕ : G → H extends to a map from the sequences
over G to the sequences over H by setting ϕ(S) = ϕ(g1) · . . . · ϕ(gl). If ϕ is a homomorphism, then
ϕ(S) is a zero-sum sequence if and only if σ(S) ∈ Ker(ϕ).

Lemma 2.1. Let G be a finite abelian group.

1. s(G) � |G| + exp(G) − 1.
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2. If H ⊂ G is a subgroup with exp(G) = exp(H)exp(G/H), then

s(G) �
(
s(H) − 1

)
exp(G/H) + s(G/H).

Proof. 1. This was first proved by the second author in his thesis (in Chinese). A proof can also be
found in [13, Theorem 4.2.7].

2. See [15, Proposition 5.7.11]. �
Lemma 2.2. Let n ∈ N with n � 2.

1. s(Cr
n) � 2r(n − 1) + 1 for every r ∈ N.

2. If n is odd, then s(C3
n ) � 9n − 8 and s(C4

n ) � 20n − 19.

Proof. 1. See [16, Hilfssatz 1].
2. See [5] and [3, Lemma 3.4 and Theorem 1.1]. �
The above mentioned lower bounds for s(C3

n ) and s(C4
n ) are due to C. Elsholtz and Y. Edel et al.

The standing conjecture is that equality holds for all odd integers (see also [11]).

Lemma 2.3. Let G = Cr
mn with m,n, r ∈ N and let c ∈ N.

1. If both Cr
m and Cr

n have Property D with respect to c and s(G) = c(mn − 1) + 1, then G has Property D.
2. If both Cr

m and Cr
n have Property D0 with respect to c, then G has Property D0 with respect to c.

Proof. 1. See [10, Theorem 3.2].
2. Let S = g0

∏c
i=1 gmn−1

i be a sequence over Cr
mn . We need to show that S has a zero-sum subse-

quence of length mn.
Let ϕ : G → G denote the multiplication by m. Then Ker(ϕ) ∼= Cr

m , ϕ(G) = mG ∼= Cr
n , and

ϕ(S) = ϕ(g0)

c∏
i=1

ϕ(gi)
mn−1

is a sequence over ϕ(G). For every i ∈ [1, c] and every j ∈ [1,m − 1], we set S(i−1)(m−1)+ j = gn
i . For

the sequence T = S(
∏c

i=1
∏m−1

j=1 S(i−1)(m−1)+ j)
−1 we get ϕ(T ) = ϕ(g0)

∏c
i=1 ϕ(gi)

n−1, and since ϕ(G)

has Property D0, T has a subsequence S0 such that ϕ(S0) is a zero-sum sequence of length n. Since
Ker(ϕ) has Property D0 and

c(m−1)∏
k=0

σ(Sk) = σ(S0)

c∏
i=1

m−1∏
j=1

σ(S(i−1)(m−1)+ j) = σ(S0)

c∏
i=1

(ngi)
m−1

is a sequence over Ker(ϕ), it has a zero-sum subsequence of length m. Therefore there is a subset
I ⊂ [0, c(m − 1)] such that |I| = m and

∑
k∈I σ(Sk) = 0, which implies that

∏
k∈I Sk is a zero-sum

subsequence of S of length mn. �
Lemma 2.4. Let a,b ∈ N0 .

1. Cr
2a has Property D with respect to 2r for every r ∈ N.

2. C4
3a has Property D with respect to 20.

3. C3
3a5b has Property D with respect to 9.
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Proof. 1. Obviously, Cr
2 has Property D, and Theorem B shows that Property D holds with respect

to 2r . Using Lemma 2.3 and Theorem B again, we infer that Cr
2a has Property D with respect to 2r .

2. Cr
3 has Property D by [16, Hilfssatz 3] and [3, Lemma 2.3.3]. It follows from Lemma 2.3 and

Theorem B that C4
3a has Property D with respect to 20.

3. As mentioned above, C3
3 has Property D, and Theorem B shows that Property D holds with

respect to 9. It has been proved in [11, Theorem 1.9] that C3
5 has Property D with respect to 9. Thus

C3
3a5b has Property D with respect to 9 again by Lemma 2.3 and Theorem B. �

Lemma 2.5. Let n ∈ N be an odd integer which is only divisible by primes p ∈ {3,5,7,11,13}. Then C3
n has

Property D0 with respect to 9.

Proof. By Lemma 2.3, it suffices to show that C3
p has Property D0 with respect to 9 for all p ∈

{3,5,7,11,13}. For p ∈ {3,5}, this follows from Lemma 2.4. For the other primes this has been ver-
ified by a computer program written in C language (the running time was about 0.03, 17 and 31
computer hours, respectively). �
3. Proof of Theorem 1.1 and some applications

Proof of Theorem 1.1. Let G = Cr
mn with m,n, r ∈ N, and let all assumptions be as in Theorem 1.1.

Assume to the contrary, there exists a sequence S over G with |S| = c(mn − 1)+ 1 such that S has no
zero-sum subsequence of length mn. Let ϕ : G → G denote the multiplication by m. Then Ker(ϕ) ∼= Cr

m
and ϕ(G) = mG ∼= Cr

n . We start with a simple observation which will be used several times in the
proof.

A1 Suppose that S = T1 · . . . · Tc(m−1)T ′ , where T1, . . . , Tc(m−1), T ′ are sequences over G and, for every
i ∈ [1, c(m − 1)], ϕ(Ti) has sum zero and length |Ti | = exp(ϕ(G)) = n. Then

σ(T1) · . . . · σ(Tc(m−1)) =
c∏

i=1

am−1
i ,

where a1, . . . ,ac(m−1) ∈ Ker(ϕ) are pairwise distinct.

Proof of A1. Since S has no zero-sum subsequence of length mn, the sequence σ(T1) · . . . ·σ(Tc(m−1))

has no zero-sum subsequence of length m. Since Ker(ϕ) has Property D, the assertion follows. �
First we show that S has a product decomposition as in assertion A1. Note that

∣∣ϕ(S)
∣∣ = c(mn − 1) + 1 = (

c(m − 1) − 1
)
n + c(n − 1) + n + 1.

Since s(Cr
n) � c(n − 1) + n + 1, S allows a product decomposition S = T1 · . . . · Tc(m−1)T ′ , where

T1, . . . , Tc(m−1), T ′ are sequences over G and, for every i ∈ [1, c(m − 1)], ϕ(Ti) has sum zero and
length |Ti | = exp(ϕ(G)) = n (for details see [15, Proposition 5.7.10]).

We set

ϕ(S) = hr1
1 · . . . · hrt

t and S = S1 · . . . · St,

where h1, . . . ,ht ∈ ϕ(G) are pairwise distinct, r1, . . . , rt ∈ N, and ϕ(Si) = hri
i for all i ∈ [1, t]. After

renumbering if necessary there exists an integer f ∈ [0, t] satisfying{
ri �

(
c(n − 1) + n

)
(n − 1), if i ∈ [1, f ],

ri �
(
c(n − 1) + n

)
(n − 1) − 1, otherwise.

(1)
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A2 For every i ∈ [1, t] we have ri � mn + c(m − 1) − m, and f � c.

Proof of A2. Assume to the contrary, there exists some i ∈ [1, t] such that ri � mn + c(m − 1) − m + 1.
By the definition of Si , we have Si = (g + g1) · . . . · (g + gri ) for some g ∈ G with ϕ(g) = hi and
g j ∈ Ker(ϕ) for every j ∈ [1, ri]. Since s(Cr

m) = c(m − 1) + 1 and ri � m(n − 1) + c(m − 1) + 1, we
can write g1 · . . . · gri = R0 R1 · . . . · Rn where R j is a zero-sum sequence of length |R j | = m for every
j ∈ [1,n]. Then the shifted sequence g + R1 · . . . · Rn is a subsequence of Si such that |g + R1 · . . . · Rn| =
|R1 · . . . · Rn| = mn and σ(g + R1 · . . . · Rn) = mng +∑n

j=1 σ(R j) = 0, a contradiction to the assumption
that S has no such zero-sum subsequence.

Combining the upper bounds on ri with the assumptions that m � (c(n−1)+n)(n−1)(nr−(c−1))−(c−1)2

n−(c−1)2

and n > (c − 1)2, we deduce that the c-th largest ri is at least

|S| − (c − 1)(mn + c(m − 1) − m)

nr − (c − 1)
�

(
c(n − 1) + n

)
(n − 1).

Thus it follows that f � c. �
A3 For every i ∈ [1, f ], Si = gvi

i W i for some gi ∈ G and |W i | � 1.

Proof of A3. Let i ∈ [1, f ]. Since |Si| = ri � (c(n − 1) + 1)(n − 1) > 2n, we may choose an arbitrary
subsequence L of Si with |L| = 2n. We set L = L1L2 where |L1| = |L2| = n, and since ϕ(Si) = hri

i , it
follows that σ(L1),σ (L2) ∈ Ker(ϕ).

Since |S| = c(mn−1)+1, SL−1 admits a product decomposition SL−1 = V 0 V 1 · . . . · V cm−c−2, where
|V i| = n and σ(V i) ∈ Ker(ϕ) for all i ∈ [1, cm − c − 2] (we use again [15, Proposition 5.7.10]). Now
by A1, σ(L1)σ (L2)σ (V 1) · . . . ·σ(V cm−c−2) = ∏c

i=1 am−1
i , where all ai ∈ Ker(ϕ) are pairwise distinct. Af-

ter renumbering if necessary we may assume that σ(V 1) · . . . · σ(V cm−c−2) = ak1
1 ak2

2

∏c
i=3 am−1

i , where
k1,k2 ∈ [m − 3,m − 1] and k1 + k2 = 2m − 4. Therefore, σ(L1),σ (L2) ∈ {a1,a2}.

Since m � 4, L1 is an arbitrary subsequence of L and L an arbitrary subsequence of Si , we infer
that L and therefore Si has at most two distinct elements. Therefore there exists some element gi ∈ G
which occurs at least ri

2 = (c(n−1)+n)(n−1)
2 � 2(n −1) times in Si . We set Si = gvi

i W i where vi = vgi (Si)

and W i = a|W i | . Assume to the contrary that |W i | � 2. We set

L1 = gn
i and L2 = gn−2

i a2,

and as above we obtain a product decomposition of S(L1L2)
−1, say S(L1L2)

−1 = V 0 V 1 · . . . · V cm−c−2,
where |V i| = n and σ(V i) ∈ Ker(ϕ) for all i ∈ [1, cm − c − 2]. Now by A1, σ(L1)σ (L2)σ (V 1) ·
. . . · σ(V cm−c−2) = ∏c

i=1 am−1
i , where all ai ∈ Ker(ϕ) are pairwise distinct. Let L′

1 = L1ag−1
i and

L′
2 = L2 gia−1. Since m � 4, again by A1, we infer that

σ
(
L′

1

)
σ

(
L′

2

)
σ(V 1) · . . . · σ(V cm−c−2) = σ(L1)σ (L2)σ (V 1) · . . . · σ(V cm−c−2) =

c∏
i=1

am−1
i .

It follows that {σ(L1),σ (L2)} = {σ(L′
1),σ (L′

2)}, which implies that σ(L1) = σ(L′
1) or σ(L1) = σ(L′

2),
and thus gi = a, a contradiction. �

Now we have

S = gv1
1 · . . . · g

v f

f T where T = W1 · . . . · W f S f +1 · . . . · St .
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A4 | supp(σ (gn
1) · . . . · σ(gn

f ))| � c.

Proof of A4. Assume to the contrary that | supp(σ (gn
1) · . . . ·σ(gn

f ))| � c − 1. By the definition of f we
have that |T | = |W1 · . . . · W f | + |S f +1 · . . . · St | � f + [(c(n − 1) + n)(n − 1) − 1](nr − f ). Since

m � (c(n − 1) + n)(n − 1)(nr − (c − 1)) − (c − 1)2

n − (c − 1)2

� nr+1 + 2n + (c(n − 1) + n)(n − 1)nr − cn + c − 1

n
,

a straightforward calculation shows that

|T | � (
c(mn − 1) + 1

) − [
(c − 1)(m − 1) + 1 + f

]
n.

Thus we get v1 + · · · + v f � ((c − 1)(m − 1) + 1 + f )n, and hence

⌊
v1

n

⌋
+ · · · +

⌊
v f

n

⌋
�

(
v1

n
− 1

)
+ · · · +

(
v f

n
− 1

)
= v1 + · · · + v f

n
− f � (c − 1)(m − 1) + 1.

By the pigeonhole principle, there are at least m sequences C1, . . . , Cm among of the 
 v1
n �+ · · ·+
 v f

n �
sequences

gn
1, . . . , gn

1︸ ︷︷ ︸

 v1

n �

, gn
2, . . . , gn

2︸ ︷︷ ︸

 v2

n �

, . . . , gn
f , . . . , gn

f︸ ︷︷ ︸

 v f

n �

such that σ(C1) = · · · = σ(Cm). This implies that C1 · . . . · Cm is a zero-sum subsequence of S of length
mn, a contradiction. �

After renumbering if necessary we may suppose that | supp(σ (gn
1) · . . . · σ(gn

c ))| = c. Let Q be the
subsequence of S with ϕ(Q ) = h

rc+1
c+1 · . . . ·hrt

t . Then we get ϕ(S) = hr1
1 · . . . ·hrc

c ϕ(Q ), and we distinguish
two cases.

Case 1. hn−1
1 · . . . · hn−1

c has no zero-sum subsequence of length n.
Let l ∈ N0 be maximal such that Q admits a product decomposition of the form Q = Q ′U1 · . . . · Ul ,

where |Ui | = n and ϕ(Ui) is a zero-sum sequence for every i ∈ [1, l]. It follows that

∣∣Q ′∣∣ =
∣∣∣∣∣ϕ

(
Q

(
l∏

i=1

Ui

)−1)∣∣∣∣∣ � s
(
ϕ(G)

) − 1 � c(n − 1) + n.

Since ϕ(G) ∼= Cr
n has Property D0 with respect to c, every sequence of the form hn−1

1 · . . . · hn−1
c ϕ(x)

with x ∈ Q ′ has a zero-sum subsequence of length n. Thus for every x ∈ supp(Q ′), one can find
a sequence Ul+1 = xU ′

l+1, where U ′
l+1|S Q −1, |Ul+1| = n and ϕ(Ul+1) has sum zero. Since

ri �
(
c(n − 1) + n

)
(n − 1) � (n − 1)

∣∣Q ′∣∣ for all i ∈ [1, c],

we can do so for every i ∈ [1, |Q ′|], and we obtain a product decomposition S = Q ′′U1 · . . . · UlUl+1 ·
. . . · Ul+|Q ′ | where the sequences Ul+1, . . . , Ul+|Q ′| have the above properties. Obviously, we have
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ϕ(Q ′′) = hq1
1 · . . . · hqc

c . Next we choose λ = [ q1
n ] + · · · + [ qc

n ] subsequences Ul+|Q ′|+1, . . . , Ul+|Q ′ |+λ

of Q ′′ such that ϕ(Ul+|Q ′ |+i) ∈ {hn
1, . . . ,hn

c } for all i ∈ [1, λ] and S = Q ′′′ ∏l+|Q ′|+λ

i=1 Ui . Obviously, we

have ϕ(Q ′′′) = h
q′

1
1 · . . . · h

q′
c

c with q′
i ∈ [0,n − 1] for all i ∈ [1, c]. Therefore we get

l + ∣∣Q ′∣∣ + λ = |S| − |Q ′′′|
n

� c(mn − 1) + 1 − c(n − 1)

n
� c(m − 1) + 1 = s

(
Cr

m

)
.

Since σ(Ui) ∈ Ker(ϕ) ∼= Cr
m for all i ∈ [1, l + |Q ′| + λ], the sequence

∏l+|Q ′|+λ

i=1 σ(Ui) has a zero-sum
subsequence of length m, and hence S has a zero-sum subsequence of length mn, a contradiction.

Case 2. hn−1
1 · . . . · hn−1

c has a zero-sum subsequence of length n.
Let

hx1
1 · . . . · hxc

c

be a zero-sum subsequence of hn−1
1 · . . . · hn−1

c with xi ∈ [0,n − 1] and x1 + · · · + xc = n. Then σ(gx1
1 ·

. . . · gxc
c ) ∈ Ker(ϕ). Since | supp(σ (gn

1) · . . . · σ(gn
c ))| = c, A1 implies that σ(gx1

1 · . . . · gxc
c ) = σ(gn

k ) for
some k ∈ [1, c], say σ(gx1

1 · . . . · gxc
c ) = σ(gn

1). Next we write S in the form

S = (
gn

1

)s1 · . . . · (gn
c

)sc g y1
1 · . . . · g yc

c M,

where si ∈ N and yi ∈ [0,n − 1] for all i ∈ [1, c]. We set

M1 = g y1
1 · . . . · g yc

c M and M2 = (
gn

1

)s1 · . . . · (gn
c

)sc
,

and consider M2 as a product of s1 + s2 + · · · + sc subsequences of the form gn
1, . . . , gn

c . On the other
hand, M1 admits a product decomposition of the form

M1 = M ′
1 A1 · . . . · Ac(m−1)−(s1+s2+···+sc)

such that |Ai| = n and σ(Ai) ∈ Ker(ϕ) for all i ∈ [1, c(m − 1) − (s1 + · · · + sc)]. Since σ(gn
1), . . . , σ (gn

c )

are pairwise distinct, A1 implies that the sequence σ(A1) · . . . · σ(Ac(m−1)−(s1+···+sc)) contains the
element σ(gn

1) exactly m − 1 − s1 times. By renumbering if necessary we assume that

σ(A j) = σ
(

gn
1

)
for every j ∈ [1,m − 1 − s1].

Next we provide a further construction of more than s1 subsequences of M2 of length n and with
sum σ(gn

1), which allows us to find more than s1 such subsequences and derive a contradiction.
Since σ(gx1

1 · . . . · gxc
c ) = σ(gn

1) and si > xi , we can write M2 in the form M2 = M ′
2 B1 · . . . · Bn where

B1 = · · · = Bn = gx1
1 · . . . · gxc

c . Next we write M ′
2 = M ′′

2 Bn+1 · . . . · Bn+[ ns1−nx1
n ] where B j = gn

1 for all

j ∈ [n + 1,n + s1 − x1].
Thus altogether there are N = n + s1 − x1 subsequences B1, . . . , BN such that σ(B j) = σ(gn

1) and
|B j | = n for all j ∈ [1, N]. Since N = n + s1 − x1 > s1, the sequence A1 · . . . · Am−s1−1 B1 · . . . · Bs1+1 is a
zero-sum subsequence of S of length mn, a contradiction. �
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Now we discuss how to apply Theorem 1.1. Let r, c and n0 be positive integers and p ∈ P a prime.
Suppose that Cr

p has Property D with respect to c, and that Cr
n0

has Property D0 with respect to c.
By Lemma 2.3, s(Cr

m) = c(m − 1) + 1 and Cr
m has Property D for every m = pa and every a ∈ N. By

Lemma 2.1.2 we get,

s
(
Cr

mn0

)
� n0

(
s
(
Cr

m

) − 1
) + s

(
Cr

n0

) = n0c(m − 1) + s
(
Cr

n0

) = c(mn0 − 1) − cn0 + c + s
(
Cr

n0

)
.

Therefore, for every fixed n0 and p, we can choose a sufficiently large such that for m0 = pa we get
s(Cr

m0n0
) � c(m0n0 − 1) + m0n0 + 1 and m0n0 � (c − 1)2 + 1. Then we can apply Theorem 1.1 with

n = m0n0 and m = pb where b is sufficiently large such that m is greater than or equal to the lower
bound in n.

We work out a few explicit cases. Let a, b, c, d, e be nonnegative integers. By the above arguments,
we can prove that s(Cr

mn) = c(mn − 1) + 1 in each of the following situations.

1. Let r = 3, c = 9, n � 65 an odd integer such that C3
p has Property D0 with respect to 9 for all

prime divisors p of n, and let m = 3a5b with

m � 5(n2 − 7){(50n(n2 − 7) − 9)(5n(n2 − 7) − 1)(125n3(n2 − 7)3 − 8) − 64}
(n2 − 7)n − 64

.

2. Let r = 4, c = 20, n � 362 an odd integer such that C4
p has Property D0 with respect to 20 for all

prime divisors p of n, and let m = 3a with

m � 3(n3 − 18){(63n(n3 − 18) − 20)(3n(n3 − 18) − 1)(81n4(n3 − 18)4 − 19) − 361}
(n3 − 18)n − 361

.

3. r � 1, c = 2r , n � (2r − 1)2 + 1 an even integer such that Cr
n has Property D0 with respect to 2r ,

and let m = 2a with

m � 2nr−1{(2nr(2r + 1) − 2r)(2nr − 1)((2nr)r − (2r − 1)) − (2r − 1)2}
nr − (2r − 1)2

.

4. Let r = 3, c = 9, n = 7c11d13e � 65, and let m = 3a5b with

m � 5(n2 − 7){(50n(n2 − 7) − 9)(5n(n2 − 7) − 1)(125n3(n2 − 7)3 − 8) − 64}
(n2 − 7)n − 64

.

Proof. 1. By Lemma 2.2.2, s(C3
k ) � 9k − 8 for all odd positive integers k. So, it suffices to prove the

upper bound. Let a0,b0 ∈ N0 with a0 ∈ [0,a] and b0 ∈ [0,b] such that,

n2 − 7 � 3a0 5b0 < 5
(
n2 − 7

)
.

Let m0 = 3a0 5b0 and n′ = m0n. By Lemma 2.1.1 and Lemma 2.1.2, s(C3
n′ ) � n(s(C3

m0
) − 1) + s(C3

n ) =
n(9m0 − 9) + s(C3

n ) � 9m0n − 9n + n3 + n − 1 � 9(n′ − 1) + n′ + 1 (the last inequality holds because
m0 = 3a0 5b0 � n2 − 7). Let m′ = m

m0
. By Lemma 2.4, C3

m′ has Property D, and by Lemma 2.3.2, C3
n′ has

Property D0 with respect to 9. Now 1. follows from Theorem 1.1 with n′ replacing n and m′ replac-
ing m.

2. can be proved in a similar way to 1. and we omit it in detail.
3. can be proved in a similar way to 1. by using Lemma 2.2.1 and we omit it in detail.
4. It follows from 1. and Lemma 2.5. �
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4. Concluding remarks and open problems

We recall the relationship between the Erdős–Ginzburg–Ziv constant and the maximal size of caps
in the affine space over F3.

Let G be a finite abelian group, and let g(G) denote the smallest integer l ∈ N such that every
squarefree sequence S over G (or in other terms, every subset S ⊂ G) of length |S| � l has a zero-sum
subsequence T of length |T | = exp(G). The constant g(G) has been studied for groups of rank two
(see [12] and [10, Section 5]). Moreover, it found a lot of attention because of its connection to finite
geometry, which we summarize below.

Proposition 4.1. Let G be a finite abelian group with exp(G) = n � 2.

1. g(G) � s(G) � (g(G)−1)(n−1)+1. If G = Cr
n, with n � 2 and r ∈ N, and s(G) = (g(G)−1)(n−1)+1,

then G has Property D.
2. Suppose that G = Fr

3 . Then the maximal size of a cap in G equals g(G) − 1, and we have s(G) = (g(G) −
1)(3 − 1) + 1 = 2g(G) − 1.

Proof. 1. The first inequality is clear. For the second statement see [3, Lemma 2.3].
2. This was first observed by H. Harborth [16]. For a proof in the present terminology see [3,

Lemma 5.2]. �
Let G = Cr

n with n � 3 odd and r ∈ N. As already observed in [3, Section 5], in all situations known
so far we have s(G) = (g(Cr

3) − 1)(n − 1) + 1, and we would like to formulate this as a conjecture
(obviously, it implies that Cr

n satisfies Property D0 with respect to g(Cr
3) − 1).

Conjecture 4.2. For all n � 3 odd and all r ∈ N, we have s(Cr
n) = (g(Cr

3) − 1)(n − 1) + 1.

Finally we consider groups with even exponent. Let n, r and a be positive integers. By Theorem B,
Lemma 2.1.2 and Lemma 2.1.1 we obtain that

s
(
Cr

2an

)
� n

(
2r(2a − 1

)) + nr + n − 1 = 2r(2an
) + nr + n − 2rn − 1,

and by Lemma 2.2.1 we have

2r(2an − 1
) + 1 � s

(
Cr

2an

)
� 2r(2an − 1

) + 1 + nr − 2rn + 2r + n − 2.

Therefore there exists an α ∈ [0,nr − 2rn + 2r + n − 2] such that

s
(
Cr

2an

) = 2r(2an − 1
) + 1 + α for infinitely many a ∈ N.

We are not aware of any even n such that s(Cr
n) > 2r(n−1)+1, and end with the following conjecture.

Conjecture 4.3. For all n, r ∈ N we have

s
(
Cr

2an

) = 2r(2an − 1
) + 1 for all sufficiently large a ∈ N.
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[6] P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10 (1961) 41–43.
[7] M. Freeze, W.A. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math. 310 (2010) 3373–3389.
[8] W. Gao, Two zero sum problems and multiple properties, J. Number Theory 81 (2000) 254–265.
[9] W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006) 337–369.

[10] W. Gao, A. Geroldinger, W.A. Schmid, Inverse zero-sum problems, Acta Arith. 128 (2007) 245–279.
[11] W. Gao, Q.H. Hou, W.A. Schmid, R. Thangadurai, On short zero-sum subsequences II, Integers 7 (2007), paper A21, 22 pp.
[12] W. Gao, R. Thangadurai, A variant of Kemnitz conjecture, J. Combin. Theory Ser. A 107 (2004) 69–86.
[13] A. Geroldinger, Additive group theory and non-unique factorizations, in: A. Geroldinger, I. Ruzsa (Eds.), Combinatorial Num-

ber Theory and Additive Group Theory, in: Adv. Courses Math. CRM Barcelona, Birkhäuser, 2009, pp. 1–86.
[14] A. Geroldinger, D.J. Grynkiewicz, W.A. Schmid, Zero-sum problems with congruence conditions, Acta Math. Hungar. 131

(2011) 323–345.
[15] A. Geroldinger, F. Halter-Koch, Non-unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math.,

vol. 278, Chapman & Hall/CRC, 2006.
[16] H. Harborth, Ein Extremalproblem für Gitterpunkte, J. Reine Angew. Math. 262 (1973) 356–360.
[17] A. Plagne, W.A. Schmid, An application of coding theory to estimating Davenport constants, Des. Codes Cryptogr., doi:

10.1007/s10623-010-9441-5, in press.
[18] A. Potechin, Maximal caps in AG(6,3), Des. Codes Cryptogr. 46 (2008) 243–259.
[19] C. Reiher, On Kemnitz’ conjecture concerning lattice points in the plane, Ramanujan J. 13 (2007) 333–337.
[20] W.A. Schmid, Restricted inverse zero-sum problems in groups of rank two, Q. J. Math., doi:10.1093/qmath/haq042, in press.
[21] W.A. Schmid, J.J. Zhuang, On short zero-sum subsequences over p-groups, Ars Combin. 95 (2010) 343–352.


