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Abstract

Let G be a finite abelian group of exponent exp(G). By D(G) we denote the
smallest integer d ∈ N such that every sequence over G of length at least d contains
a nonempty zero-sum subsequence. By η(G) we denote the smallest integer d ∈ N
such that every sequence over G of length at least d contains a zero-sum subsequence
T with length |T | ∈ [1, exp(G)], such a sequence T will be called a short zero-sum
sequence. Let C0(G) denote the set consists of all integer t ∈ [D(G) + 1, η(G)− 1]
such that every zero-sum sequence of length exactly t contains a short zero-sum
subsequence. In this paper, we investigate the question whether C0(G) 6= ∅ for all
non-cyclic finite abelian groups G. Previous results showed that C0(G) 6= ∅ for
the groups C2

n (n > 3) and C3
3 . We show that more groups including the groups

Cm ⊕Cn with 3 6 m | n, C3
3a5b , C3

3×2a , C4
3a and Cr

2b (b > 2) have this property. We
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also determine C0(G) completely for some groups including the groups of rank two,
and some special groups with large exponent.

Keywords: Zero-sum sequence; short zero-sum sequence; short free sequence; zero-
sum short free sequence; Davenport constant

1 Introduction

Let G be an additive finite abelian group of exponent exp(G). We call a zero-sum sequence
S over G a short zero-sum sequence if 1 6 |S| 6 exp(G). Let η(G) be the smallest
integer d such that every sequence S over G of length |S| > d contains a short zero-sum
subsequence. Let D(G) be the Davenport constant of G, i.e., the smallest integer d such
that every sequence over G of length at least d contains a nonempty zero-sum subsequence.
Both D(G) and η(G) are classical invariants in combinatorial number theory. For detail
on terminology and notation we refer to Section 2.

By the definition of η(G) we know that for every integer t ∈ [1, η(G) − 1], there is a
sequence S over G of length exactly t such that S contains no short zero-sum subsequence.
In this paper, we consider the following problem related to D(G) and η(G), which was
first investigated by Emde Boas in the late sixties. Given a finite abelian group, what are
integers exp(G) + 1 6 t 6 η(G) − 1, if any, such that every zero-sum sequence S over G
of length |S| = t contains a short zero-sum subsequence. Denote by C0(G) the set of all
those integers t. It will be readily seen that C0(G) ⊂ [D(G) + 1, η(G)− 1].

In 1969, Emde Boas and D. Kruyswijk [7] proved that 14 ∈ C0(C
3
3). In 1997, the

second author of this paper showed that [2q, 3q− 3] ⊂ C0(C
2
q ), where q is a prime power.

Let us first make some easy observations on C0(G). Note that for every t ∈ [1, D(G)]
there exists a minimal zero-sum sequence over G of length t. So, C0(G) ⊂ [D(G) +
1, η(G)− 1] follows from the easy fact that D(G) > exp(G).

If G = C2 ⊕ C2m then D(G) + 1 = 2m + 2 and η(G)− 1 = 2m + 1. Therefore, by the
definition we have C0(C2 ⊕ C2m) = ∅. We suggest the following

Conjecture 1. Let G be a non-cyclic finite abelian group. If G 6= C2⊕C2m then C0(G) 6=
∅.

In this paper we shall determine C0(G) completely for some groups.

Theorem 2. Let G be a non-cyclic finite abelian group, and let r(G) be the rank of G.
Then,

1. C0(G) = [D(G) + 1, η(G)− 1] if r(G) = 2.

2. C0(G) = [D(G) + 1, η(G) − 1] if G = Cmpn ⊕ H with p a prime, H a p-group and
pn > D(H).

3. C0(C
4
3) = {η(C4

3)− 2, η(C4
3)− 1} = {37, 38}.
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4. C0(C
r
2) = {η(Cr

2)− 3, η(Cr
2)− 2}, where r > 3.

We also confirm Conjecture 1 for more groups other than those listed in Theorem 2.

Theorem 3. If G is one of the following groups then C0(G) 6= ∅.

1. G = C3
3a5b where a > 1 or b > 2.

2. G = C3
3×2a where a > 4.

3. G = C4
3a where a > 1.

4. G = Cr
2a where 3 6 r 6 a, or a = 1 and r > 3.

5. G = C3
k where k = 3n15n27n311n413n5, n1 > 1, n3 + n4 + n5 > 3, and n1 + n2 >

11 + 34(n3 + n4 + n5).

The rest of this paper is organized as follows: In Section 2 we introduce some notations
and some preliminary results; In Section 3 we prove three lemmas connecting C0(G) with
property C; In Section 4 we shall derive some lower bounds on min{C0(G)}; In Section 5
we study C0(G) with focus on the groups Cr

3 ; In Section 6 and 7 we shall prove Theorem 2
and Theorem 3, respectively; and in the final Section 8 we give some concluding remarks
and some open problems.

2 Notations and some preliminary results

Our notations and terminologies are consistent with [10] and [13]. We briefly gather some
key notions and fix the notations concerning sequences over finite abelian groups. Let Z
denote the set of integers. Let N denote the set of positive integers, and N0 = N ∪ {0}.
For real numbers a, b ∈ R, we set [a, b] = {x ∈ Z : a 6 x 6 b}. Throughout this paper,
all abelian groups will be written additively, and for n, r ∈ N, we denote by Cn a cyclic
group with n elements, and denote by Cr

n the direct sum of r copies of Cn.
Let G be a finite abelian group and exp(G) its exponent. By r(G) we denote the rank

of G. A sequence S over G will be written in the form

S = g1 · . . . · g` =
∏
g∈G

gvg(S) , with vg(S) ∈ N0 for all g ∈ G ,

and we call

|S| = ` ∈ N0 the length and σ(S) =
∑̀
i=1

gi =
∑
g∈G

vg(S)g ∈ G the sum of S .

Let supp(S) = {g ∈ G : vg(S) > 0}. We call S a square free sequence if vg(S) 6 1 for
every g ∈ G. So, a square free sequence over G is actually a subset of G. A sequence T
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over G is called a subsequence of S if vg(T ) 6 vg(S) for every g ∈ G, and denote by T |S.
For every r ∈ [1, `], define∑

6r

(S) = {σ(T ) : T | S, 1 6 |T | 6 r}

and define ∑
(S) = {σ(T ) : T | S, |T | > 1}.

The sequence S is called

• a zero-sum sequence if σ(S) = 0.

• a short zero-sum sequence over G if it is a zero-sum sequence of length |S| ∈
[1, exp(G)].

• a short free sequence over G if S contains no short zero-sum subsequence.

So, a zero-sum sequence over G which contains no short zero-sum subsequence will be
called a zero-sum short free sequence over G.

For every element g ∈ G, we set g + S = (g + g1) · . . . · (g + g`). Every map of abelian
groups ϕ : G → H extents to a map from the sequences over G to the sequences over H
by ϕ(S) = ϕ(g1) · . . . · ϕ(g`). If ϕ is a homomorphism, then ϕ(S) is a zero-sum sequence
if and only if σ(S) ∈ ker(ϕ).

In the rest of this section we gather some known results which will be used in the
sequel.

We shall study C0(G) by using the following property which was first introduced and
investigated by Emde Boas and Kruyswijk [7] in 1969 for the groups C2

p with p a prime,
and was investigated in 2007 for the groups Cr

n by the second author, Geroldinger and
Schmid [12].

Property C: We say the group Cr
n has property C if η(Cr

n) = c(n − 1) + 1 for some
positive integer c, and every short free sequence S over Cr

n of length |S| = c(n − 1) has
the form S =

∏c
i=1 gn−1

i where g1, . . . , gc are pairwise distinct elements of Cr
n.

It is conjectured that every group of the form Cr
n has Property C(see [10], Section 7).

We need the following result which states that Property C is multiple.

Lemma 4. ([12], Theorem 3.2) Let G = Cr
mn with m, n, r ∈ N. If both Cr

m and Cr
n have

Property C and
η(Cr

m)− 1

m− 1
=

η(Cr
n)− 1

n− 1
=

η(Cr
mn)− 1

mn− 1
= c

for some c ∈ N then G has Property C.

We also need the following old easy result.
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Lemma 5. ([20]) D(C3
n) > 3n− 2.

Definition 6. Let G be a finite abelian group. Define g(G) to be the smallest integer t
such that every square free sequence over G of length t contains a zero-sum subsequence
of length exp(G). Let f(G) be the smallest integer t such that every square free sequence
over G of length t contains a short zero-sum subsequence.

We now gather some known results on Property C, η(G), g(G) and f(G) which will
be used in the sequel.

Lemma 7. Let r, t ∈ N, and let n > 3 be an odd integer. Then,

1. η(C3
n) > 8n− 7. ([6], or [5], Theorem 1.2)

2. η(C4
n) > 19n− 18. ([5], Theorem 1.3)

3. η(C3
3) = 17. ([19], or [6], page 3)

4. η(C4
3) = 39 and g(C4

3) = 21. ([19], or [6], page 3)

5. η(C3
5) = 33 = 8× 5− 7. ([11], Theorem 1.7)

6. η(Cr
2t) = (2r − 1)(2t − 1) + 1. ([18])

7. η(C3
3×2α) = 7(3× 2α − 1) + 1 where α > 1. ([11], Theorem 1.8)

8. C3
5 has Property C. ([11], Theorem 1.9)

9. η(Cr
3) = 2f(Cr

3)− 1. ([18])

10. Cr
3 has Property C. ([18])

Lemma 8. ([5], Lemma 5.4) Let r ∈ [3, 5], and let S and S ′ be two square free sequences
over Cr

3 of length |S| = |S ′| = g(Cr
3)− 1. Suppose that both S and S ′ contain no zero-sum

subsequence of length 3. Then S ′ = ϕ(S) + a, where ϕ is an automorphism of Cr
3 and

a ∈ Cr
3 .

Lemma 9. ([1], Lemma 1) Let T be a square free sequence over C3
3 of length 8. If T

contains no short zero-sum subsequence then there exists an automorphism ϕ of C3
3 such

that

ϕ(T ) =

0
1
0

0
0
1

0
1
1

1
0
0

1
2
0

1
1
1

1
1
2

2
0
1

.
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Lemma 10. ([3]; [5], page 182) The following square free sequence over C4
3 of length 20

contains no zero-sum subsequence of length 3.
0
0
0
0




2
0
0
0




0
2
0
0




2
2
0
0




1
0
2
0




0
1
2
0




1
2
2
0




2
1
2
0




1
1
1
0




1
1
0
1




0
0
2
2




2
0
2
2




0
2
2
2




2
2
2
2




1
0
0
2




0
1
0
2




1
2
0
2




2
1
0
2




1
1
1
2




1
1
2
1

.

Lemma 11. ([15], Theorem 5.2) Every sequence S over C2
n of length |S| = 3n−2 contains

a zero-sum subsequence of length n or 2n.

Lemma 12. ([12], Lemma 4.5) Let G be a finite abelian group, and let H be a proper
subgroup of G with exp(G) = exp(H) exp(G/H). Then η(G) 6 (η(H) − 1) exp(G/H) +
η(G/H).

Lemma 13. Let p be a prime and let H be a finite abelian p-group such that pn > D(H).
Let n1, n2, m, n ∈ N with n1 | n2. Then,

1. D(Cn1 ⊕ Cn2) = n1 + n2 − 1. ([20])

2. D(Cmpn ⊕H) = mpn + D(H)− 1. ([7])

3. Let G = Cpe1 ⊕ · · · ⊕ Cper with ei ∈ N. Then, D(G) = 1 +
∑r

i=1(p
ei − 1). ([20])

4. η(Cn1 ⊕ Cn2) = 2n1 + n2 − 2. ([14])

5. Let G = H ⊕ Cn with exp(H) | n > 2. Then, η(G) > 2(D(H)− 1) + n. ([5])

We also need the following easy lemma

Lemma 14. ([16] Lemma 4.2.2) Let G be a finite abelian group. Then, s(G) > η(G) +
exp(G)− 1.

We shall show that the following property can also be used to study C0(G).

Property D0: Let c, n ∈ N. We say that Cr
n has property D0 with respect to c if every

sequence of the form g
∏c

i=1 gn−1
i contains a zero-sum subsequence of length exactly n,

where g, gi ∈ Cr
n for all i ∈ [1, c].

Lemma 15. ([8], page 8) Let m = 3a5b with a, b nonnegative integers. Let n > 65 be an
odd positive integer such that C3

p has Property D0 with respect to 9 for all prime divisors
p of n. If

m >
2× 57n17

(n2 − 7)n− 64

then s(C3
mn) = 9mn− 8.
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3 Three lemmas connecting C0(G) with Property C

Lemma 16. Let G = Cr
n with η(G) = c(n− 1) + 1 for some c ∈ N. If c 6 n and if G has

Property C then η(G)− 1 ∈ C0(G).

Proof. Let S be a zero-sum sequence over G of length |S| = η(G) − 1 = c(n − 1). We
need to show that S contains a short zero-sum subsequence. If S =

∏c
i=1 gn−1

i for some
gi ∈ G, then (n − 1)(g1 + g2 + · · · + gc) = σ(S) = 0 = n(g1 + g2 + · · · + gc). It follows
that g1 + g2 + · · · + gc = 0. Therefore, g1g2 · . . . · gc is a zero-sum subsequence of S of
length c 6 n and we are done. Otherwise, S 6=

∏c
i=1 gn−1

i for any gi ∈ G. It follows from
G having Property C that S contains a short zero-sum subsequence.

Lemma 17. Let G be a finite abelian group, and let H be a proper subgroup of G with
exp(G) = exp(H) exp(G/H). Suppose that the following conditions hold.

(i) η(G) = (η(H)− 1) exp(G/H) + η(G/H);
(ii) G/H ∼= Cr

n has Property C;
(iii) There exist t1 ∈ [1, exp(G/H)−1] and t2 ∈ {1, 2} such that t2 6 t1 and such that

[η(G/H)− t1, η(G/H)− t2] ⊂ C0(G/H).
Then,

[η(G)− t1, η(G)− t2] ⊂ C0(G).

Proof. To prove this lemma, we assume to the contrary that there is a zero-sum short
free sequence S over G of length η(G) − t for some t ∈ [t2, t1]. Let ϕ be the natural
homomorphism from G onto G/H.

Note that

|S| = η(G)− t = (η(H)− 1) exp(G/H) + (η(G/H)− t). (3.1)

This allows us to take an arbitrary decomposition of S

S =

η(H)−1∏
i=1

Si

 · S ′ (3.2)

with
|Si| ∈ [1, exp(G/H)] (3.3)

and
σ(Si) ∈ ker(ϕ) = H (3.4)

for every i ∈ [1, η(H)− 1].
Combining (3.1), (3.2), (3.3) and (3.4) we infer that

|S ′| > η(G/H)− t > η(G/H)− t1 (3.5)

and
σ
(
ϕ(S ′)

)
= 0. (3.6)
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Claim. ϕ(S ′) contains no zero-sum subsequence of length in [1, exp(G/H)].
Proof of the claim. Assume to the contrary that, there exists a subsequence Sη(H) (say) of
S ′ of length |Sη(H)| ∈ [1, exp(G/H)] such that σ(Sη(H)) ∈ ker(ϕ) = H. It follows that the

sequence U =
η(H)∏
i=1

σ(Si) contains a zero-sum subsequence W =
∏

i∈I σ(Si) over H with

I ⊂ [1, η(H)] and |W | = |I| ∈ [1, exp(H)]. Therefore, the sequence
∏

i∈I Si is a zero-sum
subsequence of S over G with 1 6 |

∏
i∈I Si| 6 |I| exp(G/H) 6 exp(H) exp(G/H) =

exp(G), a contradiction. This proves the claim.
By (3.5), (3.6), the above claim and Condition (iii), we conclude that

t2 = 2

and
|S ′| = η(G/H)− 1. (3.7)

This together with Condition (ii) implies that

ϕ(S ′) = xn−1
1 · . . . · xn−1

c (3.8)

where c = η(G/H)−1
n−1

and x1, . . . , xc are pairwise distinct elements of the quotient group
G/H. So, we just proved that every decomposition of S satisfying conditions (3.3) and
(3.4) has the properties (3.5)-(3.8).

Since t 6 t1 6 exp(G/H) − 1, it follows from (3.1), (3.3) and (3.7) that |Si| ∈
[2, exp(G/H)] for all i ∈ [1, η(H) − 1]. Moreover, since t > t2 = 2, it follows that there
exists j ∈ [1, η(H) − 1] such that |Sj| 6 exp(G/H) − 1. Without loss of generality we
assume that

|S1| ∈ [2, exp(G/H)− 1].

Suppose that there exists h ∈ supp(ϕ(S1)) ∩ supp(ϕ(S ′)). By (3.8), we have that the
sequence S1 · S ′ contains a subsequence S ′

1 with ϕ(S ′
1) = hn. Let S ′′ = S1 · S ′ · S ′

1
−1.

We get a decomposition S = S ′
1 ·

(
η(H)−1∏

i=2

Si

)
· S ′′ satisfying (3.3) and (3.4). But |S ′′| =

|S1|+ |S ′| − |S ′
1| 6 (n− 1) + (η(G/H)− 1)− n = η(G/H)− 2, a contradiction on (3.7).

Therefore,
supp(ϕ(S1)) ∩ supp(ϕ(S ′)) = ∅.

Take a term g | S1. Since ϕ(g) /∈ supp(ϕ(S ′)) and |S ′ · g| = η(G/H), it follows from
the above claim that S ′ · g contains a subsequence S ′

1 with

g | S ′
1 (3.9)

and
|S ′

1| 6 exp(G/H) (3.10)

and
σ(S ′

1) ∈ ker(ϕ). (3.11)
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Let S ′′ = S1 ·S ′ ·S ′
1
−1. By (3.8), (3.9), (3.10) and (3.11), we conclude that |supp(ϕ(S ′′))| >

c + 1, a contradiction with (3.8). This proves the lemma.

From Lemma 17, we immediately obtain the following

Lemma 18. Let r ∈ N, and let G1 = Cr
n1

, G2 = Cr
n2

and G = Cr
n1n2

. Suppose that the
following conditions hold.

(i) η(G1)−1
n1−1

= η(G2)−1
n2−1

= η(G)−1
n1n2−1

= c for some c ∈ N;
(ii) G2 has Property C;
(iii) There exist t1 ∈ [1, n2 − 1], t2 ∈ {1, 2} such that t2 6 t1 and such that [η(G2) −

t1, η(G2)− t2] ⊂ C0(G2).
Then,

[η(G)− t1, η(G)− t2] ⊂ C0(G).

4 Some lower bounds on min{C0(G)}
In this section we shall prove the following

Proposition 19. Let G = Cr
n with n > 3, r > 3, and let αr ≡ −2r−1(mod n) with

αr ∈ [0, n− 1]. Then,

1. C0(G) ⊂ [(2r − 1)(n− 1)− αr + 1, η(G)− 1] if αr 6= 0.

2. C0(G) ⊂ {(2r − 1)(n− 1)− n, (2r − 1)(n− 1)− n + 1} if αr = 0.

Note that αr 6= 0 if and only if n 6= 2k, or n = 2k and r − 1 < k; and αr = 0 if and
only if n = 2k and k 6 r − 1.

For every r ∈ N, let
G = Cr

n =< e1 > ⊕ · · ·⊕ < er >

with < ei >= Cn for every i ∈ [1, r], and let

Sr =
∏

∅6=I⊂[1,r]

(∑
i∈I

ei

)n−1

.

We can regard Cr
n as a subgroup of Cr+1

n and therefore Sr+1 has the following decompo-
sition

Sr+1 = Sr(Sr + er+1)e
n−1
r+1 .

Since the proof of Proposition 19 is somewhat long, we split the proof into lemmas
begin with the following easy one

Lemma 20. Sr is a short free sequence over Cr
n of length |Sr| = (2r − 1)(n − 1) and of

sum σ(Sr) = −2r−1(e1 + · · ·+ er) = αr(e1 + · · ·+ er).

Proof. Obviously.
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Lemma 21. Let G = Cr
n with r > 2. Then for every m ∈ [1, n − 1] and every i ∈ [1, r],

the sequence Sr(e
m
i )−1(mei) contains no short zero-sum subsequence.

Proof. Without loss of generality, we assume that i = r.
Assume to the contrary that Sr(e

m
r )−1(mer) contains a short zero-sum subsequence

U . Since Sr contains no short zero-sum subsequence we infer that mer | U . Therefore,
U = (mer)U0(U1 + er)e

k
r with U0 | Sr−1 and U1 | Sr−1 and k ∈ [0, n − 1 − m]. It follows

that U0U1 is zero-sum and 1 6 |U0U1| 6 n− 1. Since every element in supp(Sr−1) occurs
n− 1 times in Sr−1, it follows from |U0U1| 6 n− 1 that U0U1 | Sr−1. Therefore, U0U1 is a
short zero-sum subsequence of Sr−1, a contradiction with Lemma 20.

Let A be a set of zero-sum sequences over G. Define

L(A) = {|T | : T ∈ A}.

In this section below we shall frequently use the following easy observation.

Lemma 22. Let G be a finite abelian group, and let a, b ∈ N with a 6 b. If there
exists a set A of zero-sum short free sequences over G such that [a, b] ⊂ L(A), then
C0(G) ∩ [a, b] = ∅.

Proof. It immediately follows from the definition of C0(G).

Lemma 23. Let G = Cr
n with n, r > 3. Then,

1. C0(G) ∩ [|Sr| − (3n− 3)− αr, |Sr| − αr] = ∅ if αr 6= 0.

2. C0(G) ∩ [|Sr| − (3n− 3), |Sr| − (n + 1)] = ∅ if αr = 0.

Proof. Recall that |Sr| = (2r − 1)(n− 1). We split the proof into three steps.

Step 1. In this step we shall prove that

C0(G) ∩ [|Sr| − (3n− 3)− αr, |Sr| − (n + 1)− αr] = ∅

no matter αr = 0 or not.
Let

A =
{
Sr

(
(e1 + · · ·+ er)

αrWem
3

)−1
(me3) : W | S2, σ(W ) = 0, m ∈ [1, n− 1]

}
.

It follows from Lemma 21 that every sequence in A is zero-sum short free.
Since L({W : W | S2, σ(W ) = 0}) = [n + 1, 2n− 1], we conclude easily that

L(A) = [|Sr| − (3n− 3)− αr, |Sr| − (n + 1)− αr].

Now the result follows from Lemma 22 and Conclusion 2 follows.

Step 2. We show that C0(G) ∩ [|Sr| − (n + αr), |Sr| − (r − 1)αr] = ∅ for αr 6= 0.
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Let

A1 =
{
Sr

(
(e1 + e2)

αreαr
3 · . . . · eαr

r em
1

)−1
(me1) : m ∈ [1, n− 1]

}
and

A2 =
{
Sr

(
(e1 + e2)

αr(e1 + e3)e
αr−1
3 eαr

4 · . . . · eαr
r en−1

1

)−1}
.

It is easy to see that every sequence in A1 ∪ A2 is zero-sum short free by Lemma 21 and
Lemma 20. Note that

L(A1) ∪ L(A2) = [|Sr| − (r − 1)αr − n + 2, |Sr| − (r − 1)αr] ∪ {|Sr| − (r − 1)αr − n + 1}
= [|Sr| − (r − 1)αr − n + 1, |Sr| − (r − 1)αr].

Since r > 3, we have |Sr| − (r− 1)αr − n + 1 6 |Sr| − (n + αr). Therefore, L(A1 ∪A2) =
L(A1)∪L(A2) ⊃ [|Sr| − (n + αr), |Sr| − (r− 1)αr]. Again the result follows from Lemma
22.

Step 3. We prove C0(G) ∩ [|Sr| − (r − 1)αr, |Sr| − αr] = ∅ for αr 6= 0.
Let

A =
{
Sr

(
(e1 + · · ·+ er)

k1(e1 · . . . · er)
k2(e1 + · · ·+ ek3)ek3+1 · . . . · er

)−1
:

k1 ∈ [0, αr − 1], k2 ∈ [0, αr − 1], k1 + k2 = αr − 1, k3 ∈ [1, r]
}
.

Then every sequence in A is zero-sum short free by Lemma 21 and by Lemma 20, and

L(A)

= {|Sr| − k1 − rk2 − 1− (r − k3) : k1 + k2 = αr − 1, k2 ∈ [0, αr − 1], k3 ∈ [1, r]}
= {|Sr| − αr − ((r − 1)k2 + (r − k3)) : k2 ∈ [0, αr − 1], k3 ∈ [1, r]}
= [|Sr| − rαr, |Sr| − αr].

Now the result follows from Lemma 22 and the proof is completed.

Lemma 24. Let n, r ∈ N with n > 3 and r > 3, and let G = Cr
n. If αr 6= 0 then

C0(G) ⊂ [(2r − 1)(n− 1)− αr + 1, η(G)− 1].

Proof. It suffices to show that C0(G) ∩ [n + 1, |Sr| − αr] = ∅.
We proceed by induction on r. Suppose first that r = 3.
By Lemma 23 and the definition of C0(C

3
n), we only need to prove

C0(G) ∩ [D(C3
n) + 1, |S3| − (3n− 3)− α3 − 1] = ∅.

By Lemma 5 we have D(C3
n) + 1 > 3n− 1. So, it suffices to prove that

C0(G) ∩ [3n− 1, |S3| − (3n− 3)− α3 − 1] = C0(G) ∩ [3n− 1, 4n− 4− α3 − 1] = ∅.
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If n = 3, then [3n− 1, 4n− 4− α3 − 1] = ∅ and the result follows.
Now assume n > 4. It follows from α3 6= 0 that n > 5. Thus, α3 = n − 4 and

[3n− 1, 4n− 4− α3 − 1] = {3n− 1}.
Let T = (e1 + e2)

2(e1 + e3)
n−1en−1

1 en−2
2 e3. Then T is zero-sum short free over C3

n of
length |T | = 3n − 1. Now the result follows from Lemma 22. This completes the proof
for r = 3.

Now assume that r > 4. By the induction hypothesis there exists a set Ar−1 of
zero-sum short free sequences over Cr−1

n such that

L(Ar−1) = [n + 1, |Sr−1| − αr−1].

Recall that Cr−1
n ⊂ Cr

n = Cr−1
n ⊕ 〈er〉. Let

Ar =
{
W2(W1 + er)e

`
r : W1 ∈ Ar−1, W2 ∈ Ar−1, ` ∈ [0, n− 1], |W1|+ ` ≡ 0(mod n)

}
.

Then, every sequence in Ar is zero-sum short free over Cr
n and

L(Ar) = {|W2|+ |W1|+ ` : W1 ∈ Ar−1, W2 ∈ Ar−1, ` ∈ [0, n− 1], |W1|+ ` ≡ 0(mod n)}

= {|W2|+ kn : W2 ∈ Ar−1, k ∈ [2, d|Sr−1| − αr−1

n
e]

⊃ [3n + 1, 2|Sr−1| − 2αr−1].

It follows that
L(Ar−1) ∪ L(Ar) ⊃ [n + 1, 2|Sr−1| − 2αr−1].

Note that

2|Sr−1| − 2αr−1 = |Sr| − (n− 1)− 2αr−1

> |Sr| − 3(n− 1).

Therefore,
L(Ar−1) ∪ L(Ar) ⊃ [n + 1, |Sr| − 3(n− 1)].

Now the result follows from Lemma 23.

Lemma 25. Let n, r, k ∈ N with k > 2, r > k + 1 and n = 2k, and let G = Cr
n. Then,

C0(G) ⊂ {(2r − 1)(n− 1)− n, (2r − 1)(n− 1)− n + 1}.

Proof. Since r > k + 1 we have that αr = 0.
By Lemma 7 we have

|Sr| = (2r − 1)(n− 1) = η(G)− 1.

So, it suffices to show that C0(G)∩([n+1, η(G)−(n+2)]∪[η(G)−n+1, η(G)−1]) = ∅.
Since r > k + 1 we have

σ(Sr) = 0.
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Step 1. We show C0(G) ∩ [n + 1, |Sr| − (n + 1)] = ∅.
We proceed by induction on r. Suppose first that r = k + 1.
If r = k +1 = 3, we only need to prove C0(G)∩ [3n− 1, 4n− 5] = ∅ by Lemma 23 and

Lemma 5. Let

A ={(e1 + e2 + e3)(e1 + e2)
n−1(e1 + e3)

n−m(e2 + e3)e
m
1 en−1

2 em−2
3 : m ∈ [2, n− 1]}∪

{(e1 + e2)
2(e1 + e3)

n−1en−1
1 en−2

2 e3}.

Then every sequence in A is zero-sum short free and L(A) = [3n− 1, 4n− 3] and we are
done.

If r = k + 1 > 3, we have αr−1 6= 0 and r − 1 > 3, then by Lemma 24 there exists a
set A of zero-sum short free sequences over Cr−1

n such that L(A) ⊃ [n + 1, |Sr−1| − αr−1].
Let

B = A ∪
{
W2(W1 + er)e

`
r : W1 ∈ A, W2 ∈ A, ` ∈ [0, n− 1], |W1|+ ` ≡ 0(mod n)

}
.

Since
|Sr−1| − αr−1 + |Sr−1| − αr−1 + αr−1 − 1 = |Sr| − 3n/2,

we have L(B) ⊃ [n+1, |Sr|−3n/2]. It follows from Lemma 23 that C0(C
r
n)∩ [n+1, |Sr|−

(n + 1)] = ∅.
Now assume that r > k+1. By the induction hypothesis, we conclude that there exists

a set A of zero-sum short free sequences over Cr−1
n such that L(A) ⊃ [n+1, |Sr−1|−(n+1)].

Define a set B of zero-sum short free sequences over Cr
n as follows

B =
{
W2(W1 + er)e

`
r : W1 ∈ A, W2 ∈ A, ` ∈ [0, n− 1], |W1|+ ` ≡ 0(mod n)

}
.

It is easy to see that

L(B) ⊃ [|Sr−1| − n, 2|Sr−1| − 2(n + 1)] = [|Sr−1| − n, |Sr| − (3n + 1)].

Let

C1 = {T : T | S2, σ(T ) = 0};
C2 = {(e1 + e3)

n−mem−1
1 en−1

2 (e1 + e2)e
m
3 : m ∈ [1, n− 1]};

C3 = {(e1 + e2)
2(e1 + e3)

n−1en−1
1 en−2

2 e3};
C4 = {(e1 + e2 + e3)(e1 + e2)

n−1(e1 + e3)
n−m(e2 + e3)e

m
1 en−1

2 em−2
3 : m ∈ [2, n− 1]}.

Then every sequence in ∪4
i=1Ci is zero-sum short free. Clearly,

L(C1) = [n + 1, 2n− 1];

L(C2) = [2n, 3n− 2];

L(C3) = {3n− 1};
L(C4) = [3n, 4n− 3].
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Let
C = ∪4

i=1Ci.

Then,
L(C) ⊃ [n + 1, 4n− 3].

Let
D = {SrT

′−1 : T ′ ∈ C}.
Then every sequence in D is zero-sum short free, and

L(D) ⊃ [|Sr| − (4n− 3), |Sr| − (n + 1)]

⊃ [|Sr| − 3n, |Sr| − (n + 1)].

This completes the proof of Step 1.

Step 2. We prove C0(G) ∩ [η(G)− n + 1, η(G)− 1] = ∅.
Let

A = {Sr(e
m
r )−1(mer) : m ∈ [1, n− 1]}.

Then every sequence in A is zero-sum short free by Lemma 21, and

L(A) = [|Sr| − n + 2, |Sr|] = [η(G)− n + 1, η(G)− 1].

This completes the proof.

Proof of Proposition 19. 1. It is just Lemma 24.

2. Since αr = 0, we have n = 2k for some k ∈ [2, r − 1], now the result follows from
Lemma 25.

5 On the groups Cr
3

In this section we shall study C0(G) with focus on G = Cr
3 .

Proposition 26. Let r, t ∈ N. Then,

1. C0(C
3
3) ⊂ [η(C3

3)− 4, η(C3
3)− 1].

2. C0(C
3
5) ⊂ [η(C3

5)− 5, η(C3
5)− 1].

3. C0(C
r
2t) ⊂

{
[η(Cr

2t)− (2t − 2r−1), η(Cr
2t)− 1], if r 6 t,

[η(Cr
2t)− (2t + 1), η(Cr

2t)− 2t], if r > t.

4. C0(C
3
6) ⊂ {η(C3

6)− 2, η(C3
6)− 1}.

Proof. Conclusions 1, 2 and 4 follow from Lemma 7 and Proposition 19. So, it remains to
prove Conclusion 3. If r 6 t then applying Proposition 19 with αr = 2t − 2r−1, it follows
from Conclusion 6 of Lemma 7 that C0(C

r
2t) ⊂ [(2r−1)(2t−1)−(2t−2r−1)+1, η(Cr

2t)−1] =
[η(Cr

2t) − (2t − 2r−1), η(Cr
2t) − 1]. If r > t then applying Proposition 19 with αr = 0 we

get, C0(C
r
2t) ⊂ [η(Cr

2t)− (2t + 1), η(Cr
2t)− 2t].
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Lemma 27. Let G = Cr
3 with r > 3, and let S be a sequence over G. Then,

1. If S is a short free sequence over G of length |S| = η(G)−1, then
∑
62

(S) = Cr
3 \{0}.

2. Let T be a square free and short free sequence over G, and let S = T 2. Then, for
every g ∈ supp(S) we have,

∑
62

(S · g−1) =
∑
62

(S) \ {2g}.

3. If every short free sequence of length η(G)−1 has sum zero, then η(G)−2 ∈ C0(G).

Proof. Conclusions 1 and 2 are obvious.
To prove Conclusion 3, we assume to the contrary that η(G) − 2 /∈ C0(G), i.e., there

exists a zero-sum short free sequence S over G of length |S| = η(G) − 2. By Lemma
7, we have η(G) − 2 = 2(f(G) − 2) + 1. This forces that S = g2

1 · . . . · g2
f(G)−2 · gf(G)−1

for some distinct elements g1, . . . , gf(G)−1 with g1 · . . . · gf(G)−1 contains no short zero-sum
subsequence. Put T = S ·gf(G)−1. Then |T | = η(G)−1. But T contains no short zero-sum
subsequence and σ(T ) = gf(G)−1 6= 0, a contradiction.

Lemma 28. Every short free sequence over C3
3 of length 16 has sum zero.

Proof. Let S be an arbitrary short free sequence over C3
3 of length |S| = 16. From Lemma

7 we obtain that S = T 2, where T is a square free and short free sequence over C3
3 of

length 8. It follows from Lemma 9 that σ(T ) = 0. Therefore, σ(S) = 2σ(T ) = 0.

Lemma 29. The following two conclusions hold.

1. {14, 15} = {η(C3
3)− 3, η(C3

3)− 2} ⊂ C0(C
3
3).

2. {37, 38} = {η(C4
3)− 2, η(C4

3)− 1} ⊂ C0(C
4
3).

Proof. 1. The conclusion 14 ∈ C0(C
3
3) is due to Emde Boas and D. Kruyswijk [7]. Now

15 ∈ C0(C
3
3) follows from Conclusion 3 of Lemma 7, Lemma 27 and Lemma 28.

2. Denote by U the square free sequence over C4
3 given in Lemma 10. It follows from

Conclusion 4 of Lemma 7 that U is a square free sequence of maximum length which
contains no zero-sum subsequence of length 3.

Choose an arbitrary square free sequence T over C4
3 of length f(C4

3)− 1 such that T
contains no short zero-sum subsequence. By Lemma 7, we have |T | = 19.

Claim. σ(T ) /∈ −supp(T ) ∪ {0}.
Proof of the claim. Put S = T · 0. It follows from Conclusion 4 of Lemma 7 that S is a
square free sequence over C4

3 of maximum length which contains no zero-sum subsequence
of length 3. By Lemma 8, there exists an automorphism ϕ of C4

3 and some g ∈ C4
3 such

that S = ϕ(U−g). Since 0 | S, it follows that g | U . Thus, σ(T ) = σ(S) = σ(ϕ(U−g)) =

ϕ(σ(U − g)) = ϕ(σ(U)− 20g) = ϕ(σ(U) + g). It is easy to check that σ(U) =

(
2
2
2
2

)
. Since

−σ(U) =

(
1
1
1
1

)
/∈ supp(U), it follows that −σ(T ) = −ϕ(σ(U) + g) = ϕ(−σ(U) − g) /∈

ϕ(supp(U)− g) = supp(S) = supp(T ) ∪ {0}. This proves the claim.
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From Conclusions 4, 9, 10 of Lemma 7 and the above claim, we derive that every short
free sequence over C4

3 of length η(C4
3) − 1 = 38 has a nonzero sum. This is equivalent

to that every zero-sum sequence over C4
3 of length η(C4

3) − 1 contains a short zero-sum
subsequence. Hence, 38 = η(C4

3)− 1 ∈ C0(C
4
3).

Suppose that 37 = η(C4
3) − 2 /∈ C0(G), that is, there exists a zero-sum short free

sequence V over C4
3 of length |V | = η(C4

3)−2 = 37. Since vg(V ) 6 2 for every g ∈ supp(V ),
we have |supp(V )| > 19. On the other hand, by Conclusion 4 and 9 of Lemma 7, we can

derive that |supp(V )| 6 f(C4
3) − 1 =

η(C4
3 )−1

2
= 19. Thus, V = W 2h−1, where h | W and

W is a square free and short free sequence over G of length f(C4
3) − 1 = 19. It follows

from σ(V ) = 0 that σ(W ) = −h ∈ −supp(W ), a contradiction with the claim above.

Proposition 30. Let G = Cr
3 with r > 3. If there is a short free sequence S over G of

length |S| = η(G)− 1 such that σ(S) 6= 0, then

1. |{η(G)− 2, η(G)− 3} ∩ C0(G)| 6 1.

2. |{η(G)− 3, η(G)− 4} ∩ C0(G)| 6 1.

Proof. 1. Since σ(S) 6= 0, it follows from Lemma 27 that there exists a subsequence
W of S of length |W | ∈ {1, 2} such that σ(S) = σ(W ). Therefore, σ(S · W−1) = 0,
|S · W−1| ∈ {η(G) − 3, η(G) − 2} and S · W−1 contains no short zero-sum subsequence.
Hence, η(G)− 2 /∈ C0(G) or η(G)− 3 /∈ C0(G).

2. By Conclusion 10 of Lemma 7, we have that S = T 2, where T is a square free sequence
over G. Choose g ∈ supp(S) such that σ(S · g−1) 6= 0. Since σ(S · g−1) = σ(S)− g 6= 2g,
it follows from Conclusion 2 of Lemma 27 that σ(S · g−1) ∈

∑
62

(S · g−1) = Cr
3 \ {0, 2g}.

Similarly to Conclusion 1, we infer that η(G)− 3 /∈ C0(G) or η(G)− 4 /∈ C0(G).

Proposition 31. C0(C
4
3) = {37, 38}.

Proof. By Proposition 19, we have

C0(C
4
3) ⊂ [30, η(C4

3)− 1] = [30, 38]. (5.1)

We show next that
[30, 36] ∩ C0(C

4
3) = ∅. (5.2)

Put

T2 =


2
2
2
2


2

;

T3 =


2
2
0
0




0
0
2
2




2
2
2
2

 ;
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T4 =


2
0
0
0




0
2
0
0




0
0
2
2




2
2
2
2

 ;

T5 =


2
0
0
0


2

0
2
0
0




0
0
2
2




0
2
2
2

 ;

T6 =


0
2
0
0




2
2
2
2


2

0
1
0
2




1
2
0
2




2
1
0
2

 ;

T7 =


2
0
0
0




0
2
0
0




1
0
2
0




0
1
2
0




1
2
2
0




0
0
2
2




0
2
2
2

 ;

T8 =


2
0
0
0




0
2
0
0


2

1
0
2
0




0
1
2
0




1
2
2
0




0
0
2
2


2

.

Let U be the square free sequence given in Lemma 10. Then σ(U) =


2
2
2
2

. Let S =

U2 · 0−2. We see that S is a short free sequence of length 38 = η(C4
3) − 1. By removing

Ti from S, we obtain that the resulting sequence Si is a zero-sum short free sequence of
length η(G) − i − 1 = 38 − i. This proves (5.2). Combining (5.1), (5.2) and Lemma 29,
we conclude that C0(C

4
3) = {η(G)− 2, η(G)− 1} = {37, 38}.

6 Proof of Theorem 2

In this section we shall prove Theorem 2 and we need the following lemma.

Lemma 32. Let p be a prime and let H be a finite abelian p-group such that pn > D(H).
Then,

1. Every sequence S over Cpn ⊕H of length |S| = 2pn +D(H)− 2 contains a zero-sum
subsequence T of length |T | ∈ {pn, 2pn}.

2. η(Cmpn ⊕H) 6 mpn + pn + D(H)− 2.
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Proof. 1. Let S = g1 · . . . · g` be a sequence over G = Cpn ⊕ H of length ` = |S| =

2pn+D(H)−2. Let αi =

(
1
gi

)
∈ Cpn⊕Cpn⊕H with 1 ∈ Cpn . By Conclusion 10 of Lemma

13, α1 · . . . ·α` is a sequence over Cpn ⊕G of length ` = pn +pn +D(H)−2 = D(Cpn ⊕G).
Therefore, α1 · . . . ·α` contains a nonempty zero-sum subsequence W (say). By the making
of αi we infer that |W | = pn or |W | = 2pn. Let T be the subsequence of S which
corresponds to W . Then T is a zero-sum subsequence of S of length |T | ∈ {pn, 2pn}.
2. We first consider the case that m = 1. Let G = Cpn ⊕ H. We want to prove that
η(G) 6 2pn + D(H)− 2.

Let S = g1 · . . . ·g` be a sequence over G = Cpn⊕H of length ` = |S| = 2pn +D(H)−2.
We need to show that S contains a short zero-sum subsequence. It follows from Conclusion
1 that S contains a zero-sum subsequence T of length |T | ∈ {pn, 2pn}. If |T | = pn then T
itself is a short zero-sum sequence over G and we are done. Otherwise, since pn > D(H),
it follows from Conclusion 3 of Lemma 13 that |T | = 2pn > pn + D(H) − 1 = D(G).
Therefore, T contains a nonempty proper zero-sum subsequence T ′. Now either T ′ or
TT ′−1 is a short zero-sum subsequence of S. This proves that η(Cpn⊕H) 6 2pn+D(H)−2.
By Lemma 12, we have

η(Cmpn ⊕H) 6 (η(Cm)− 1) exp(Cpn ⊕H) + η(Cpn ⊕H)

6 (m− 1)pn + 2pn + D(H)− 2

= mpn + pn + D(H)− 2.

Lemma 33. Let G be a finite abelian group. Then [D(G) + 1, min{2 exp(G) + 1, η(G)−
1}] ⊂ C0(G).

Proof. If [D(G)+1, min{2 exp(G)+1, η(G)−1}] = ∅ then the conclusion of this lemma hold
true trivially. Now assume that [D(G)+1, min{2 exp(G)+1, η(G)−1}] 6= ∅. Let S be an
arbitrary zero-sum sequence over G of length |S| ∈ [D(G)+1, min{2 exp(G)+1, η(G)−1}].
It suffices to show that S contains a short zero-sum subsequence. Since |S| > D(G) + 1,
it follows that S contains a zero-sum subsequence T of length |T | ∈ [1, |S| − 1]. Then
σ(ST−1) = 0. Since |S| 6 2 exp(G) + 1, we infer that |T | ∈ [1, exp(G)] or |ST−1| ∈
[1, exp(G)]. This proves the lemma.

Proof of Theorem 2, 1. By the definition of C0(G) we have, C0(G) ⊂ [D(G)+1, η(G)−1].
So, we need to show

[D(G) + 1, η(G)− 1] ⊂ C0(G).

Suppose first that
G = Cn ⊕ Cn.

By Conclusions 1 and 4 of Lemma 13, we have D(G) = 2n− 1 and η(G) = 3n− 2. Let S
be a zero-sum sequence over G of length |S| ∈ [2n, 3n− 3]. We need to show S contains
a short zero-sum subsequence. We may assume that

v0(S) = 0.
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Let T = S · 03n−2−|S|. Then |T | = 3n − 2 and T contains a zero-sum subsequence T ′

of length |T ′| ∈ {n, 2n} by Lemma 11. If |T ′| = n then T ′0−v0(T ′) is a short zero-sum
subsequence of S and we are done. So, we may assume that |T ′| = 2n. Let T ′′ = TT ′−1.
Now T ′′ is a zero-sum subsequence of T of length |T ′′| = n − 2. If T ′′ contains at least
one nonzero element then T ′′0−v0(T ′′) is a short zero-sum subsequence of S and we are
done. So, we may assume that T ′′ = 0n−2. This forces that T ′ = S. It follows from
D(G) = 2n − 1 that S contains a zero-sum subsequence S0 of length |S0| ∈ [1, 2n − 1].
Therefore, either S0 or SS−1

0 is a short zero-sum subsequence of S.
Now suppose that

G = Cn ⊕ Cm

with n | m and
n < m.

By Conclusions 1 and 4 of Lemma 13, we have that D(G) = n + m − 1 < 2m and
2m+1 > 2n+m−2 = η(G). It follows from Lemma 33 that [D(G)+1, η(G)−1] ⊂ C0(G).

2. By Conclusion 2 of Lemma 13 and Conclusion 2 of Lemma 32, we have that D(Cmpn ⊕
H) = mpn + D(H)− 1 and η(Cmpn ⊕H) 6 mpn + pn + D(H)− 2.

Suppose m > 2. Then η(Cmpn ⊕ H) 6 2mpn. Similarly to the proof of Conclusion 1,
we can prove that [D(Cmpn ⊕ H) + 1, η(Cmpn ⊕ H) − 1] ⊂ C0(G), and we are done. So,
we may assume

m = 1.

Then η(Cpn⊕H) 6 2pn+D(H)−2 and the proof is similar to that of 1 by using Conclusion
1 of Lemma 32.

3. It is just Proposition 31.

4. Observe that
∑

g∈Cr
2\{0}

g = 0. Then, any square free sequence S over Cr
2 with v0(S) = 0

and |S| ∈ {2r−3, 2r−2} must have a nonzero sum. It follows from Conclusion 6 of Lemma
7 that {η(Cr

2)−3, η(Cr
2)−2} = {2r−3, 2r−2} ⊂ C0(C

r
2). So, C0(C

r
2) = {2r−3, 2r−2} =

{η(Cr
2)− 3, η(Cr

2)− 2} follows from Proposition 19.

7 Proof of Theorem 3

Lemma 34. If η(Cr
m)−1

m−1
= η(Cr

n)−1
n−1

= c for some c ∈ N and if η(Cr
mn) > c(mn−1)+1 then

η(Cr
mn) = c(mn− 1) + 1.

Proof. The lemma follows from Lemma 12.

Lemma 35. Cr
2t has Property C.

Proof. It follows from Lemma 4 and Conclusion 6 of Lemma 7 by induction on t.

Proposition 36. Let n = 3m, where m is an odd positive integer. Then,

1. If η(C3
m) = 8m− 7 then η(C3

n)− 2 ∈ C0(C
3
n).
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2. If η(C4
m) = 19m− 18 then {η(C4

n)− 2, η(C4
n)− 1} ⊂ C0(C

4
n).

Proof. 1. By Conclusion 3 of Lemma 7 and Lemma 12, we have

η(C3
n) 6 (η(C3

3)− 1) ·m + η(C3
m)

= 16m + 8m− 7

= 8n− 7.

Combined with Conclusion 1 of Lemma 7, we have

η(C3
n)− 1

n− 1
=

η(C3
m)− 1

m− 1
=

η(C3
3)− 1

3− 1
= 8. (7.1)

Now we show η(C3
n)−2 ∈ C0(C

3
n) by applying Lemma 18 with G2 = C3

3 and t1 = t2 = 2.
Conditions (i)-(iii) of Lemma 18 are verified by (7.1), Conclusion 10 of Lemma 7, and
Conclusion 1 of Lemma 29 respectively. We are done.

2. The proof is similar to that of Conclusion 1.

Proposition 37. Let α, β ∈ N0 with α > 1. Then,

1. If α + β > 2 then {η(C3
3α5β)− 2, η(C3

3α5β)− 1} ⊂ C0(C
3
3α5β).

2. {η(C4
3α)− 2, η(C4

3α)− 1} ⊂ C0(C
4
3α).

Proof. 1. By Conclusions 1, 3 and 5 of Lemma 7 and Lemma 34, we conclude that

η(C3
3s5t)− 1

3s5t − 1
= 8 (7.2)

for every s, t ∈ N0 with s + t > 1. Combined with Proposition 36, we have η(C3
3α5β)− 2 ∈

C0(C
3
3α5β).

By Lemma 4, Conclusions 8, 10 of Lemma 7 and (7.2), we have C3
3α5β has Property

C. Since α + β > 2, we have 8 < 3α5β. Therefore, it follows from (7.2) and Lemma 16
that η(C3

3α5β)− 1 ∈ C0(C
3
3α5β). We are done.

2. By Conclusion 2 of Lemma 29, we need only to consider the case that α > 1. By
Conclusions 2 and 4 of Lemma 7 and Lemma 34, we can derive

η(C4
3α−1)− 1

3α−1 − 1
= 19.

Combined with Conclusion 2 of Proposition 36, we have {η(C4
3α) − 2, η(C4

3α) − 1} ⊂
C0(C

4
3α), done.

Proposition 38. Let m = 3α5β with α ∈ N and β ∈ N0. Let n > 65 be an odd positive
integer such that C3

p has Property D0 with respect to 9 for all prime divisors p of n. If

m >
6× 57n17

(n2 − 7)n− 64
+ 3

then η(C3
mn)− 2 ∈ C0(C

3
mn).
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Proof. Let m′ = m
3
. Then m′ = 3α−15β > 2×57n17

(n2−7)n−64
and α− 1 > 0.

By Lemma 15 and Lemma 14 we have s(C3
m′n) = 9m′n− 8 and η(C3

m′n) 6 8m′n− 7.
It follows from Lemma 7 that η(C3

m′n) = 8m′n − 7. Since η(C3
3) = 8 × 3 − 7 and

η(C3
m′n) = 8m′n− 7, it follows from Lemma 34 that η(C3

mn) = 8mn− 7. What’s more, C3
3

has Property C and η(C3
3)− 2 ∈ C0(C

3
3) by Lemma 29. Therefore, η(C3

mn)− 2 ∈ C0(C
3
mn)

by Lemma 18.

Proof of Theorem 3.

1. If a > 1 then it follows from Proposition 37 and Lemma 29. Now assume b > 2. Since
η(C3

3a5b) = 8(3a5b − 1) + 1, it follows from Lemma 16 that η(C3
3a5b)− 1 ∈ C0(C

3
3a5b).

2. Let G1 = C3
3×2a−3 and G2 = C3

8 . By Lemma 35, Conclusions 6, 7 and 8 of Lemma 7,
we have that η(G1) = 7(3× 2a−3− 1)+1, η(G2) = 7× (8− 1)+1 and G2 has Property C.
Therefore, η(C3

8) − 1 ∈ C0(C
3
8) by Lemma 16. So, η(C3

3×2a) − 1 ∈ C0(C
3
3×2a) by Lemma

18.

3. The result follows from Proposition 37.

4. Let G = Cr
2a with 3 6 r 6 a. By Lemma 35 and Conclusions 6 of Lemma 7, we have

η(Cr
2a) = (2r − 1)(2a − 1) + 1 and Cr

2a has Property C. Since 2r − 1 < 2a, it follows from
Lemma 16 that η(Cr

2a)− 1 ∈ C0(C
r
2a).

If G = Cr
2 and r > 3, then it follows from Conclusion 4 of Theorem 2.

5. Let m = 3n15n2 and n = 7n311n413n5 . It follows from n3 +n4 +n5 > 3 that n > 65. By
the hypothesis of n1 + n2 > 11 + 34(n3 + n4 + n5) we infer that, m = 3n15n2 > 3n1+n2 >
311334(n3+n4+n5) > 4× 58 × 1314(n3+n4+n5) > 4× 58n14 > 6×57n17

(n2−7)n−64
+ 3. Since it has been

proved that every prime p ∈ {3, 5, 7, 11, 13} has Property D0 with respect to 9 in [8], it
follows from Proposition 38 that η(C3

k)− 2 ∈ C0(C
3
k).

8 Concluding Remarks and Open Problems

Proposition 39. Let G be a non-cyclic finite abelian group with exp(G) = n. Then
C0(G) ∪ {η(G)} doesn’t contain n + 1 consecutive integers.

Proof. Assume to contrary that [t, t + n] ⊂ C0(G) ∪ {η(G)} for some t ∈ N. By the
definition of C0(G) we have that t+n−1 < η(G). So, we can choose a short free sequence
T over G of length |T | = t + n − 1. It follows from t + n − 1 ∈ C0(G) ∪ {η(G)} that
σ(T ) 6= 0. Let g = σ(T ) and let S = T · (−g). Since |S| = t + n ∈ C0(G) ∪ {η(G)}, S
contains a short zero-sum subsequence U with (−g) | U . Note that t 6 |S ·U−1| 6 t+n−2
and σ(S · U−1) = 0. It follows from [t, t + n] ⊂ C0(G) ∪ {η(G)} that S · U−1 contains a
short zero-sum subsequence, which is a contradiction with S · U−1 | T .

Proposition 39 just asserts that C0(G) can’t contain any interval of length more than
exp(G). Proposition 19 shows that C0(C

r
n) could not contain integers much smaller than

η(Cr
n)− 1. So, it seems plausible to suggest
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Conjecture 40. Let G 6= C2 ⊕ C2m, m ∈ N be a non-cyclic finite abelian group. Then
C0(G) ⊂ [η(G)− (exp(G) + 1), η(G)− 1].

Conjecture 40 and Conjecture 1 suggest the following

Conjecture 41. Let G 6= C2 ⊕ C2m, m ∈ N be a non-cyclic finite abelian group. Then
1 6 |C0(G)| 6 exp(G).

Conjecture 42. C0(G) = [min{C0(G)}, max{C0(G)}].

The following notation concerning the inverse problem on s(G) was introduced in [10].
Property D: We say the group Cr

n has property D if s(Cr
n) = c(n − 1) + 1 for some

positive integer c, and every sequence S over Cr
n of length |S| = c(n− 1) which contains

no zero-sum subsequence of length n has the form S =
∏c

i=1 gn−1
i where g1, . . . , gc are

pairwise distinct elements of Cr
n.

Conjecture 43. ([10], Conjecture 7.2) Every group Cr
n has Property D.

It has been proved in ([10], Section 7) that Conjecture 43, if true would imply

Conjecture 44. Every group Cr
n has Property C.

Suppose that Conjecture 44 holds true for all groups of the form Cr
n. For fixed n, r ∈ N

and any a ∈ N we have that η(Cr
na) = c(na, r)(n − 1) + 1, where c(na, r) ∈ N depends

on na and r. By Lemma 12 we obtain that the sequence {c(na, r)}∞a=1 is decreasing.
Therefore, c(na, r) 6 na for all sufficiently large a. Hence, by Lemma 16 we infer that
η(Cr

na)− 1 ∈ C0(C
r
na) for all sufficiently large a ∈ N.
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