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1. Introduction

Let G be an additive finite abelian group with exponent exp(G) = m. Let D(G) denote the Davenport
constant of G, which is defined as the smallest integer t such that every sequence S over G of length
|S| > t contains a nonempty zero-sum subsequence. For every positive integer k, let sy, (G) denote the
smallest integer t such that every sequence S over G of length |S| > t contains a zero-sum subsequence
of length km. For k = 1, we abbreviate s,,(G) to s(G) which is called the Erd6s-Ginzburg-Ziv constant
of G. The famous Erdés-Ginzburg-Ziv theorem asserts that s (G) < 2|G| — 1 and equality holds
for cyclic groups. Let 1(G) be the smallest integer t such that every sequence S over G of length
|S| > t contains a zero-sum subsequence of length in [1, m]. The constants s(G) and 1 (G) are classical
invariants in zero-sum theory and have received a lot of attention (For example, see [2-4,6-11,15-17,
19,20,25-28,30-33]). For some recent progress on them we refer to [20]. Our main motivation is the
following conjecture suggested by the second author [14] in 2003.

Conjecture 1.1. s(G) = n(G) + exp(G) — 1 holds for all finite abelian groups G.

This conjecture holds true for all G when s(G) has been determined. For the case that s(G) is un-
known, this conjecture has been confirmed [ 14] only for exp(G) € {3, 4}. In this paper we shall prove
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Theorem 1.2. Let H be an arbitrary finite abelian group with exp(H) = m > 2, and let G = Cp,;, ® H. If
n > max{m|H| + 1, 4|H| + 2m} then s(G) = n(G) + exp(G) — 1.

Theorem 1.3. Let G be a finite abelian group, and let S be a sequence over G of length |S| = s(G) — 1
such that 0 & Yoy (S)- If Maxgec{vg(S)} > [Z2E=1 | then s(G) = n(G) + exp(G) — 1.

Corollary 1.4. Let m be a positive integer, and let H be a finite abelian group with exp(H)|m and
D(H) = m. Suppose that D(C,, ® Cp, ® H) = 2m + D(H) — 2. If n > max{m|H| + 1, 4|H| + 2m}
then s(Cpyn ® H) = n(Cppn @ H) + mn— 1= (2n+ 1)m+ D(H) — 3.

2. Preliminaries

Our notation and terminology are consistent with [15,21]. We briefly gather some key notions and
fix the notations concerning sequences over finite abelian groups. Let N denote the set of positive
integers, and Ny = N U {0}. For any two integers a,b € N, we set [a,b] = {x € N:a < x < b}.
Throughout this paper, all abelian groups will be written additively, and for n, r € N, we denote by C,
the cyclic group of order n, and denote by C;, the direct sum of r copies of C,.

Let G be a finite abelian group and exp(G) its exponent. A sequence S over G will be written in the
form

S=g1 ... g8 = Hg"g(s>, with v, (S) € Ny forallg € G,
geG

and we call

¢
|S| = £ € Ny the length and o (S) = Zg,— = ng(S)g € G the sumof S.
i=1 geG

Let supp(S) = {g € G : vg(S) > 0}. Forevery r € [1, £] define
Y S ={o(M):T|S, [T =7}

where T | S means T is a subsequence of S.
The sequence S is called

e azero-sum sequence if o (S) = 0.
e ashort zero-sum sequence over G if it is a zero-sum sequence of length |S| € [1, exp(G)].

For every elementg € G,wesetg +S = (g +g1) ... - (g +g).Ifp:G — Hisagroup
homomorphism, then ¢(S) = ¢(g1) - ... - ¢(g) is a zero-sum sequence if and only if o (S) € ker(¢p).
Lemma 2.1 ([12,19], [21, Theorem 5.7.4]). s(G) < |G| + exp(G) — 1.

Lemma 2.2. s(G) > n(G) + exp(G) — 1.

Proof. Let S be a sequence over G of length |S| = 7n(G) — 1 such that S contains no short zero-
sum subsequence. Then, the sequence 0%P(©~1S contains no zero-sum subsequence of length exp(G).
Therefore, s(G) > 1+ |0%P©~15| = y(G) +exp(G) — 1. O

Lemma 2.3. Let n, k be two positive integers with2 < k < % and let S be a sequence over C, of length
|S| = 2n — k. Suppose that S contains no zero-sum subsequence of length n. Then,

(i) there exist two distinct elements a, b € G, such that
Va(S) + vp(S) = 2n — 2k + 2. (1)

(i) Let aq, by, az, by € Gy withay # by and ay # by. If v, (S) + b, (S) + v, (S) + vp, (S) = 3n —2
then {ay, b1} = {az, b}.
(iii) If k < % then the pair {a, b} in the inequality (1) is uniquely determined by S.
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Proof. (i) The existence of the pair {a, b} satisfying inequality (1) follows from [34, Corollary 7].
(ii) Assume to the contrary that {a;, b1} # {ay, b,}. Without loss of generality we assume that
a, ¢ {ay, b1}. It follows that

Va, (S) + vp, (S) + v, (S) = IS].

Since S contains no zero-sum subsequence of length n, vy, (S) <n—1and [S| < 2n -2 =s(C;) — 1
by the Erdés-Ginzburg-Ziv theorem. Therefore, vq, (S) > vq,(S) + vy, (S) — n + 1. Hence, 2n — 2 >
IS| = g, (S) + vp,(S) + Vg, (S) = Vg, (S) + vp, (S) + Vg, (S) + vp,(S) — n + 1. This gives that
Vg, (S) + vp, (§) + vg, (§) + vy, (S) < 3n — 3, a contradiction.

(iii) Now suppose that k < ”%7. Note that 2(2n — 2k + 2) = 4n — 4k + 4 > 3n — 3. Now (iii)
follows from (ii). O

The following three easy lemmas will be used in the proof of Corollary 1.4.

Lemma 2.4 ([7,Lemma 3.2]).Let n € N, and let H be a finite abelian group with exp(H)|n. Let G = C,&®H.
Then, n(G) > n+ 2(D(H) — 1).

Lemma 2.5 (/21, Proposition 5.7.11]). Let G be a finite abelian group, and let H be a subgroup of G with
exp(G) = exp(H) exp(G/H). Then, 1(G) < exp(G/H)(n(H) — 1) + n(G/H).
Lemma 2.6. Let H and K be two finite abelian groups, and let G = H®K. Then, D(G) > D(H)+D(K) —1.

We also need the following technical result for the proof of Corollary 1.4.

Lemma 2.7. Let m be a positive integer, and let H be a finite abelian group with m > D(H). Suppose that
D(Cpn ® Cp ® H) = 2m + D(H) — 2. Then, n(Cn ® H) < 2m + D(H) — 2.

Proof. From Lemma 2.6 and the well known fact that D(C,,) = m we infer that, 2m + D(H) — 2 =
D(Cn®Crn®H) >m+D(C, ®H) — 1 > 2m + D(H) — 2. This forces that

D(Ch,®H)=m+D(H) — 1< 2m.

Let S be a sequence over C,, @ H of length |S| = 2m + D(H) — 2. We need to show that S contains
a short zero-sum subsequence over C,, @ H. Obviously, exp(C,, ® H) > m. So, it suffices to prove

that S contains a zero-sum subsequence of length in [1, m]. Let r = |S| and letS = g; - ... - g;. Let
G=Cn,®Cp®H = (e1) ®Cy & H with (e;) = C. Consider the sequence

W= (e, g1) ... (e1,8)
over G.

Since r = 2m + D(H) — 2 = D(G), W contains a nonempty zero-sum subsequence T. By the
construction of W we see that |T| € {m, 2m}. Suppose T = [, (e1, &) with [I| € {m, 2m}. Then,
S1 = [ie &i is a zero-sum subsequence of S of length |S;| € {m, 2m}. If |S;] = m then we are done.
Otherwise, |S1| = 2m > D(C;, @ H). It follows that S; contains a zero-sum subsequence S, (say) such
that 1 < |S;| < D(Cy, ® H) < |S4]. Therefore, either S, or 515;1 is a short zero-sum sequence over
Cn®H. O

3. Proofs of Theorems 1.2, 1.3 and Corollary 1.4

Proof of Theorem 1.2. By Lemma 2.2 we only need to show n(G) — 1 > s(G) — exp(G). Let ¢ :
Cmnn @ H — G, @ H be the natural homomorphism with ker(¢) = C, (up to isomorphism). By the
definition of s(G), there exists a sequence S over G such that |S| = s(G) — 1and0 & >, .(S).

Apply s(¢(Crn@®H)) = s(C ®H) to ¢(S) repeatedly, we can get a decompositionS = Sy-...-S,-S
with

ISi| = m, o (S;) € ker(p) foreveryie [1,r] (2)
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and s(C,, ® H) — m < |S'| < s(Cy, ® H) — 1. Therefore,
o P5| —s(Cn ®H) + 1}

h m

(3)

LetU = 0(51)0(Sy) - - - o (Sp). It follows fromO0 ¢ >~ (S)that0 & Y (U).Since s(G) > s(Cn) =
2mn — 1and s(C,, @ H) < m - |H| + m — 1 by Lemma 2.1, we infer that
- s(G) — s(Gy D H) - 2mn—1—(m-|H|+m—1)
- m - m

Letk =2n—r.Since0 ¢ ), (U), r = |U| < 2n—2 by the Erd6s-Ginzburg-Ziv theorem. It follows
that k > 2. By (4) and the hypothesis thatn > max{m|H|+ 1, 4|H|4+2m} > 4|H| —2 we get, k < ”Alﬂ.
It follows from Lemma 2.3 that there exists a unique pair {a, b} such that

vo(U) + vp(U) = 2n — 2k + 2.

Ul =r

=2n—|H| - 1. (4)

Denote by 2 the set consisting of all decompositions of S satisfying (2) and (3). Choose a
decomposition S = S; - S, -...-S, - S € £ such that v,(U) + v, (U) attains the minimal value. Let
£ = vg(U) + vp(U). By renumbering if necessary we assume that o (5;) € {a, b} foralli € [1, £]. Let

VA
W= ]_[s,-.
i=1

From k < %andn > 4|H| + 2m > 2m we derive that £ > 2n — 2k + 2 > m.

Claim 1. Let W, be a subsequence of W of length |Wy| = m. If o (Wy) € ker(¢) then o (Wp) € {a, b}.

Assume to the contrary that o (Wy) ¢ {a, b}. Since |Wy| = m, by renumbering we may assume
that Wy|S; - S, - ... - Sp. Then S has a decomposition
S=Smnt1 Smiz--.- S -Wp-Sy-S;3-...-S -S" €

where |S/| = m and o (S]) € ker(y) for everyi € [2, m].

Let Uy = 0(Smt1) - 0Sme2) - ... - 0(Sp) - o(Wp) - 0(Sy) - ... - o(S)). By Lemma 2.3(i) and
(iii), there is a unique pair {a;, by} such that vy, (U1) + vy, (U1) > 2n — 2k + 2. Note that vy (Uy) +
vp(Uy) > vg(U) + vp(U) — m > 2n — 2k + 2 — m. Since n > 4|H| + 2m and (4), we infer that
Vg, (U1) +vp, (U1) +va(Ur) +vp(Ur) > 2(2n—2k+2)—m > 3n—2.S0,{a, b} = {a;, b1} by Lemma 2.3.
But v, (Uy) + vp(U;) < ve(U) + vp(U), a contradiction to the minimality of U. This proves Claim 1.

Sincen > m|H|+ 1and (4), |¢(W)| = (vq(U) +vp(U))-m > (2n—2|H|)m > 2m—2) - |C,, ® H|.
Therefore, there exist an element hg € C; @ H and a subsequence W; of W such that ¢(W;) = hﬁ’"’].
Now we have the following.

Claim 2. There exists an element g, € G such that gg'|W.

Suppose that there are three distinct elements gy, g1, g2 € supp(W). Let W, be a subsequence of
Wi(g0g182) ! of length |W,| = m — 2. Then, W,gog;, Wagog, and W, g, g, are three subsequences of
W each having sum in ker(¢) = C,. But the sums o (W,8081), 0 (W>8082), 0 (W,g18,) are distinct, a
contradiction to Claim 1. Therefore, |supp(W;)| < 2. Now Claim 2 follows from |W;| = 2m — 1.

Without loss of generality, we assume that o (gg') = mgo = aand gf'|S; - S, - ... - S Then S has
the following decomposition:
S=Smt1-Smiz-----Sr-8g Wy -Ws-...-W -W e

where |W/| = m and o (W) € ker(p) for every i € [2, m].
LetUy; = 0 (Sms1) - 0(Smpz) ... 0(Sp) -a-a(Wy) -...-o(W,).Since n > 4|H| + 2m, from (4)
we infer that v, (Uy) + vp(Uz) > va(U) + vp(U) —(m— 1) > %n. Therefore,

( )>*— ( )>*—( _1) =
va(U n vp(U n n > —.
a 2_2 b 2_2 2
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Let

T=—-g0+S=(-80 +Snt1)  (—80+Sm2) ... - (=80 +Sr) - (=80 + &5 - (—go + W)
(g AWy .. (g +W) (g +W)=T - T,-...-T. - T

where T" = —go + W/, and Ty, ..., T, is a permutation of (—go + Siy1), (—€0 + Sma2)s - .., (—&o0 +
S5r), (=8 + &), (=80 + W), (—go + W3), ..., (=g + W;,) such that Ty = —go + g;' = 0™ and
o (T;) = Oforeveryi € [2, rg]]. It follows from 0 ¢ ), (S) that

0¢ >y (T

Let
R:T1~T2-...-T(%1 :O”’~T2-T3-...-T[g1.

Let V be the longest short zero-sum subsequence of TR™! (if TR~! has no short zero-sum subsequence
then let V be the empty sequence).

Write |V| = mq+t witht € [0, m— 1]. Clearly, q € [0, n — 1].If |VR| > mn, then 0™ ‘T, - - - T,,_4V
is a zero-sum subsequence of VR of length [0™ ‘T, - - - T,_V| = mn, a contradictionwith0 & )", (T).
Therefore,

[VR| < mn — 1.
Hence,
V| < mn/2.

If T(RV)~! has a short zero-sum subsequence V;, then similarly to above we get |V;| < mn/2, and
so VV; is also a short zero-sum subsequence, but |[VV;| > |V|, a contradiction. Therefore, T(RV) ™! con-
tains no short zero-sum subsequence. Hence, (G)—1 > [T(RV)~!'| = s(G)—1—|RV| > s(G)—mn. O

Proof of Theorem 1.3. By Lemma 2.2, s(G) > n(G) + exp(G) — 1. So, it suffices to prove s(G) <
n(G) + exp(G) — 1.

Let m = exp(G), and let gy € G such that vg (S) = maxgec{vy(S)}. Let h = v, (S) and let
So = —go+S.Then,0 ¢ ", (So) follows from 0 ¢ }", (S),and h = vo(Sp) > | "5 |. Write S = 0T
Let Ty be the maximal (in length) zero-sum subsequence of T of length |Ty| € [0, m]. We assert that

0 <m-— - i Zero-sum su u \Y .
Tol +h <m — 1and TT, ' contains no short zero-sum subsequence over G

If [To| + h > m then T,0™ '™l is a zero-sum subsequence of Sy of length m, a contradiction. If
TTO’] contains a short zero-sum subsequence Ty, then 1 < |T;| < |Ty| by the maximality of T.
Therefore, |ToT;| < 2|Ty| < 2(m — 1 — h) < m. Hence, TyT; is also a short zero-sum sequence over
G. But, |ToT;| > |To|, a contradiction on the maximality of |Ty|. This proves the assertion. Therefore,
n(G)—1> [Ty = |S|—h—|To| = s(G)—1—(h+|To|) = s(G)—1—(m—1) and s(G) < n(G)+m—1
follows. O

Proof of Corollary 1.4. By Lemmas 2.7 and 2.5 we obtain that, n(Cp, @ H) < (n + 1)m + D(H) — 2.
It follows from Lemma 2.4 that n(Cy,, @ H) > nm + 2(D(H) — 1) = (n + 1)m 4+ D(H) — 2. Hence,
N(Cun @ H) = (n+ 1)m+ D(H) — 2.

Let mg = exp(H). Since exp(H)|m, m = mom; with m; € N. Let np = nmy. Then, mgny = mn and
ng > n > max{m|H| + 1, 4|H| 4+ 2m} > max{mg|H| + 1, 4|H| + 2mg}. It follows from Theorem 1.2
that s(Cyin @ H) = $(Cmgng ® H) = mong + n(Cngny ® H) — 1 = mn + n(Cyn ® H) — 1 =
2n+1m+D(H) —3. O

4. Concluding remarks

Let p be a prime, and let H be a finite abelian p-group. If m = p* = D(H) for some positive integer a
and if n > max{m|H|+ 1, 4|H| + 2m} then m, n and H fulfill the condition of Corollary 1.4. Therefore,
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$(Cpn ® H) = mn + n(Cppp ® H) — 1 = (2n 4+ 1)m + D(H) — 3. This result was first obtained by
Geroldinger, Grynkiewicz and Schmid [20] for all n € N by using a result in [35, Theorem 1.2], which
was achieved with some highly technical results (see [35, Theorem 3.1]) on enumeration. It would be
very interesting to find some pairs of {m, H} with m not being a prime power to fulfill the condition
of Corollary 1.4.

The equality s(G) = 1(G) + exp(G) — 1 holds for all groups G for which s(G) is known. Here we
give a list of these groups.

Proposition 4.1. Let n,r,a, b, c, d, e, m be nonnegative integers withn > 0 and r > 0. Then the
equality s(G) = n(G) + exp(G) — 1 holds true for the following groups G.
G=GCy ®Cy, with1 < nq | ny.
. G = G @Czrb’],wherer >2,b>1landa € [1, b].
G=CJ,, wherea+b> 1.
G = Cj, wherea > 1.
G =G5, ,c wherea > 1.
. Gis a p-group for some odd prime p with D(G) = 2 exp(G) — 1.
G = H & C,, where p is an odd prime, H is a finite abelian p-group with exp(H) | n = exp(G) and
D(H) | exp(H).
8. G = C2, withm = 3°5” and n = 7°11913¢ such that
2 x 55017
m=-————.
~ (n?—-7)n—64

Nou s w N~

Lemma 4.2 ([7, Theorem 1.2]). Let n, r be positive integers. Then,

1. n(C3) > 8n — 7 holds for all odd n.
2. n(C}H > 19n — 18 holds for all odd n.
3 =@ —Dn-1)+1.

Proof of Proposition 4.1. 1.1t has been proved in [7, Theorem 1.1] that s(C,, @ Cy,) = 1n(Gy, ®Gy,) +
ny; — 1 :21’1] +2n2—3.

2.1t has been proved in [7, Corollary 4.4] that s(G) = n(G) +2° —1 =212+ 2 —2) + 1.

3. Let £ = 395”. It has been proved in [16] that s(C;) = 9¢ — 8. Now the result follows from
Lemmas 4.2 and 2.2.

4, Let £ = 3° It has been proved in [ 10, Lemma 2.4] that s(CZ‘) = 20¢ — 19. Now the result follows
from Lemmas 4.2 and 2.2.

5.Let £ = 3 x 2° It has been proved in [16] that s(Cg’) = 8¢ — 7. Now the result follows from
Lemmas 4.2 and 2.2.

6. It has been proved in [35, Theorem 1.2] that s(G) = 1n(G) + exp(G) — 1 = 4exp(G) — 3.

7. The result follows from [20, Theorems 4.2.1 and 2].

8. Let £ = mn. It has been proved in [10] that s(Cf’) = 9¢ — 8. Now the result follows from
Lemmas4.2and 2.2. O

Since Conjecture 1.1 holds true for the groups G with exp(G) € [3, 4] as mentioned in the Intro-
duction, we do not include these groups in the list in Proposition 4.1. Conjecture 1.1 remains widely
open. We even are unable to prove or disprove it for the group G = C withr > 4.

Let m = exp(G), skm(G) was first introduced by the second author in [14], and was studied
further in [18,29]. For the case that km = |G|, sig;(G) has attracted a lot of attention. In 1996,
the second author [13] proved the following result which can be regarded as an extension of the
Erd8s-Ginzburg-Ziv theorem.

si6/(G) = |G| + D(G) — 1. (5)

Weighted generalizations of (5) have been made by many authors since 1996 (for example see
[23,24,22,1,36]). A new proof for (5) has been provided recently in [5]. In fact, by using the method
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in [13] one can obtain that
skm(G) = km + D(G) — 1 (6)

provided that km > |G|.
Let £(G) be the smallest integer t such that (6) holds true for all k > t. So, we have £(G) < % For
some further results and open problems on £(G) we refer to [18].
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