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Abstract

Let G be an additive finite abelian group with exponent exp(G). Let S = g1 · . . . · gl

be a sequence over G and k(S) = ord(g1)−1+· · ·+ord(gl)−1 be its cross number. Let
η(G) (resp. t(G)) be the smallest integer t such that every sequence of t elements
(repetition allowed) from G contains a non-empty zero-sum subsequence T of length
|T | ≤ exp(G) (resp. k(T ) ≤ 1). It is easy to see that t(G) ≥ η(G) for all finite abelian
groups G, and a previous result showed that for every positive integer r ≥ 4, there
exist finite abelian groups of rank r such that t(G) > η(G). In this paper we provide
the first example of groups G of rank three with t(G) > η(G). We also prove that
t(G) = η(G) for G = C2 ⊕ C2p where p is a prime.

1. Introduction

Let G be an additively written finite abelian group with exp(G) its exponent. A
sequence S = g1 ·. . .·gl over G is said to be a zero-sum sequence, if

�l
i=1 gi = 0. S is
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called a minimal zero-sum sequence, if it contains no proper zero-sum subsequence.
The cross number k(S) of a sequence S is defined by

k(S) =
l�

i=1

1
ord(gi)

.

The cross number is an important concept in factorization theory. For recent
work on the cross number we refer to ([10], [12], [13]).

By t(G) we denote the smallest integer t ∈ N such that every sequence S over G

of length |S| ≥ t contains a non-empty zero-sum subsequence S
�|S with k(S�) ≤ 1.

Such a subsequence will be called a tiny zero-sum subsequence.
The study of t(G) goes back to the late 1980s, Lemke and Kleitman [17] proved

that t(Cn) = n, which confirmed a conjecture by Erdős and Lemke, where Cn

denotes the cyclic group of n elements.
In the general case, Kleitman and Lemke [17] conjectured that t(G) ≤ |G| holds

for every finite abelian group G. This conjecture was confirmed by Geroldinger [9]
in 1993. A different proof was found by Elledge and Hurlbert [4] in 2005 using graph
pebbling. For more work on applications of graph pebbling to zero-sum problems
we refer to ([2], [3], [15], [16]).

Quite recently, Girard [14] proved that, by using a result of Alon and Dubiner
[1], for finite abelian groups of fixed rank, t(G) grows linearly in the exponent of G,
which gives the correct order of magnitude.

Let η(G) denote the smallest integer t ∈ N such that every sequence S over G of
length |S| ≥ t contains a non-empty zero-sum subsequence S

�|S with |S�| ≤ exp(G).
Such a subsequence is called a short zero-sum subsequence. For more information
on η(G) we refer to [5] and [6].

Since k(T ) ≤ 1 implies |T | ≤ exp(G), we know that η(G) ≤ t(G) always holds.
The constant η(G) is one of many classical invariants in so-called zero-sum theory.
For zero-sum theory and its application, the interested reader is referred to [7] and
[11].

Girard [14] noticed that if t(G) = η(G) for some finite abelian group G, then
η(H) ≤ η(G) for any subgroup H of G, and then he deduced that for any positive
integer r ≥ 4, there is a finite abelian group of rank r such that t(G) > η(G). Girard
[14] also proved that t(C2

pα) = η(C2
pα) = 3pα − 2 for any prime p and conjectured

that t(G) = η(G) for all finite abelian groups of rank two.

Conjecture 1.1. For all positive integers m,n with m|n, we have

t(Cm ⊕ Cn) = η(Cm ⊕ Cn) = 2m + n− 2.

Conjecture 1.1 is wide open. For the case that G has rank three, he asked the
following question.
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Question 1.2. ([14], page 1856) Does t(G) = η(G) hold for all finite abelian groups
G of rank three?

In this paper, we offer a negative answer to this question by showing

Theorem 1.3. Let n > 1 be a positive integer, and let G = C2 ⊕ C2 ⊕ C2n. Then
t(G) > η(G) = 2n + 4.

We also prove the following.

Theorem 1.4. Let p be a prime, and let G = C2 ⊕ C2p. Then, t(G) = η(G).

2. Notations and Preliminaries

Let P denote the set of prime numbers, N denote the set of positive integers, and
N0 = N ∪ {0}. For any two integers a, b ∈ N0, we set [a, b] = {x ∈ N0 : a ≤ x ≤ b}.
Throughout this paper, all abelian groups will be written additively, and for n, r ∈
N, we denote by Cn the cyclic group of order n, and denote by C

r
n the direct sum

of r copies of Cn.
Let F(G) be the free abelian monoid, multiplicatively written, with basis G. The

elements of F(G) are called sequences over G. We write sequences S ∈ F(G) in the
form

S = Π
g∈G

g
vg(S)

, with vg(S) ∈ N0 for all g ∈ G.

We call vg(G) the multiplicity of g in S, and we say that S contains g if vg(S) > 0.
The unit element 1 ∈ F(G) is called the empty sequence. A sequence S1 is called a
subsequence of S if S1 | S in F(G). For a subset A of G we denote SA = Πg∈Ag

vg(S)
.

If a sequence S ∈ F(G) is written in the form S = g1 · . . . · gl, we tacitly assume
that l ∈ N0 and g1, . . . , gl ∈ G.

For a sequence
S = g1 · . . . · gl = Π

g∈G
g

vg(S) ∈ F(G),

we call

• |S| = l =
�

g∈G vg(G) ∈ N0 the length of S,

• supp(S) = {g ∈ G|vg(S) > 0} ⊂ G the support of S,

• σ(S) =
�l

i=1 gi =
�

g∈G vg(S)g ∈ G the sum of S,

The sequence S is called zero-sumfree if it contains no nonempty zero-sum subse-
quence.

We denote by A(G) ⊂ F(G) the set of all minimal zero-sum sequences over G.
Every map of abelian groups ϕ : G → H extends to a homomorphism ϕ : F(G) →
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F(H) where ϕ(S) = ϕ(g1) · . . . · ϕ(gl). If ϕ is a homomorphism then ϕ(S) is a
zero-sum sequence if and only if σ(S) ∈ ker(ϕ).

We shall use the following invariants on zero-sum sequences.

Definition 2.1. Let n, t ∈ N and exp(G) = n. We denote by

• D(G) the smallest integer t ∈ N such that every sequence S ∈ F(G) of length
|S| ≥ t contains a non-empty zero-sum subsequence. The invariant D(G) is
called the Davenport constant of G.

• s(G) the smallest integer t ∈ N such that every sequence S ∈ F(G) of length
|S| ≥ t contains a zero-sum subsequence of length exp(G).

Throughout this paper, let p always denote an odd prime.

Lemma 2.2. [11, Theorem 5.4.5] Let n > 1 be a positive integer, and let S ∈ F(Cn)
be a sequence of length n−1. If S is zero-sumfree then S = g

n−1 for some generating
element g ∈ Cn.

Lemma 2.3. Let n > 1 be a positive integer, and let S ∈ F(Cn) be a sequence of
length 2n− 1. If S contains no two disjoint nonempty zero-sum subsequences then
S = g

2n−1 for some generating element g ∈ Cn.

Proof. Let T be an arbitrary subsequence of S of length |T | = n − 1. Then,
|ST

−1| = n = D(Cn). Therefore, ST
−1 contains a zero-sum subsequence. It follows

from the hypothesis of the lemma that T is zero-sumfree. Hence, T = g
n−1 for

some generating element g ∈ Cn by Lemma 2.2. Now the result follows from the
arbitrariness of the choice of T . ✷

Lemma 2.4. Let n > 1 be a positive integer, G = C2⊕C2⊕C2n, and let (e1, e2, e3)
be a basis of G with ord(e1) = ord(e2) = 2 and ord(e3) = 2n. Then, the sequence
S = e

2n−1
3 e1e2(e1 +e3)(e1 +e2 +e3)(e1 +e2) contains no tiny zero-sum subsequence

and therefore t(G) > 2n + 4.

Proof. Let W = e
2n−1
3 e1e2(e1 + e3)(e1 + e2 + e3). It is easy to see that W contains

no short zero-sum subsequence, and the sequence W1 = e1e2(e1 + e2) is the only
short zero-sum subsequence of S. But k(W1) = 3

2 > 1. Therefore, S contains no
tiny zero-sum subsequence. Hence, t(G) > |S| = 2n + 4. ✷

3. Proof of the Main Results

Proof of Theorem 1.3. By Lemma 2.4, it suffices to prove that η(C2 ⊕C2 ⊕C2n) =
2n+4. Let (e1, e2, e3) be a basis of G with ord(e1) = ord(e2) = 2 and ord(e3) = 2n.
Let W = e

2n−1
3 e1e2(e1 + e3)(e1 + e2 + e3). Clearly, W contains no short zero-sum

subsequence. Therefore, η(G) ≥ 1 + |W | = 2n + 4.
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So, it remains to prove η(G) ≤ 2n + 4. Let S ∈ F(G) be a sequence of length
2n + 4, we need to show that S contains a short zero-sum subsequence. Assume to
the contrary that S contains no short zero-sum subsequence.

Let ϕ : G → C
3
2 be the homomorphism with ker(ϕ) = Cn. Since η(C3

2 ) = 8 and
|S| = 2n + 4, S has a decomposition S = T1 · · ·Tn−1T with σ(Ti) ∈ ker(ϕ) \ {0}
and |Ti| ≤ 2 for each i ∈ [1, n− 1]. It follows that |T | ≥ |S|− 2(n− 1) ≥ 6.

Since S contains no short zero-sum subsequence and D(ker(ϕ)) = D(Cn) = n,
the sequence σ(T1) · . . . ·σ(Tn−1) is zero-sumfree over Cn and ϕ(T ) contains no short
zero-sum subsequence over C

3
2 . It follows that | supp(ϕ(T ))| = |ϕ(T )| = |T |. Recall

that |T | ≥ 6. Let T
� be a subsequence of T of length |T �| = 6. So, ϕ(T �) is a subset

of C
3
2 . Suppose that (C3

2 \{0})\ϕ(T �) = {α}. Let x1, x2, x3 be a basis of C
3
2 . Then,

C
3
2 = {0, x1, x2, x3, x1+x2, x1+x3, x2+x3, x1+x2+x3}. Let ψ be an automorphism

over C
3
2 with ψ(α) = x1 + x2 + x3. Then, ϕ(T �) = {α1,α2,α3,α4,α5,α6} with

α1 = ψ
−1(x1),α2 = ψ

−1(x2),α3 = ψ
−1(x3),α4 = ψ

−1(x1 + x2),α5 = ψ
−1(x1 + x3)

and α6 = ψ
−1(x2 +x3). It is easy to check that the following subsequences of ϕ(T �)

are all zero-sum.

α1α2α4,α1α3α5,α2α3α6,α4α5α6,α1α2α5α6,α1α3α4α6,α2α3α4α5. (1)

Let T
� = g1g2g3g4g5g6 with ϕ(gi) = αi for every i ∈ [1, 6]. From (1) we know

that each of the following subsequences of T
� has sum in ker(ϕ) and each is of length

in [3, 4]:
g1g2g4, g1g3g5, g2g3g6, g4g5g6, g1g2g5g6, g1g3g4g6, g2g3g4g5. (2)

Let Tn be any sequence listed in (2). Then, σ(T1)·. . .·σ(Tn−1)·σ(Tn) is a sequence
over ker(ϕ) = Cn of length n. If there is a subset I ⊂ [1, n] such that 1 ≤ |I| ≤ n−1
and such that

�
i∈I σ(Ti) = 0, then

�
i∈I Ti is a zero-sum subsequence of S of length

��
�

i∈I

Ti

�� ≤ 2(|I|− 1) + 4 ≤ 2(n− 2) + 4 = 2n,

a contradiction. Therefore, every subsequence of σ(T1)·. . .·σ(Tn−1)·σ(Tn) of length
n− 1 is zero-sumfree. Therefore, σ(T1) = σ(T2) = · · · = σ(Tn) by Lemma 2.2. This
proves that every sequence listed in (2) has sum σ(T1). Therefore,

g1 + g2 + g4 = g1 + g3 + g5 = g2 + g3 + g6 = g4 + g5 + g6

= g1 + g2 + g5 + g6 = g1 + g3 + g4 + g6 = g2 + g3 + g4 + g5.

From g1+g2+g4 = g1+g2+g5+g6 we get that g4 = g5+g6. Similarly, we obtain that
g5 = g4+g6 and g6 = g4+g5. Therefore, g4+g5+g6 = (g5+g6)+(g4+g6)+(g4+g5)
and g4 + g5 + g6 = 0 follows. Hence, g4g5g6 is a short zero-sum subsequence of S,
a contradiction. This proves that η(C2 ⊕ C2 ⊕ C2n) = 2n + 4. ✷

Proof of Theorem 1.4. As mentioned in the introduction we always have t(G) ≥
η(G). From a result in [11, Theorem 5.8.3] we know that t(G) ≥ η(G) = 2p+2. So,
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it remains to prove that t(G) ≤ 2p+2. Let S ∈ F(G) be of length |S| = 2p+2. We
need to show that S contains a tiny zero-sum subsequence. Assume to the contrary
that S contains no tiny zero-sum subsequence.

For every integer d, let Sd denote the subsequence of S consisting of all terms of
S of order d. Then S = S2SpS2p and

|S2| + |Sp| + |S2p| = 2p + 2. (3)

Let ϕ : G → C
2
2 be the homomorphism with ker(ϕ) = Cp and ψ : G → Cp be the

homomorphism with ker(ψ) = C
2
2 . For any element g | S2 we have g ∈ ker(ψ) and

since η(C2
2 ) = 4 we deduce that

|S2| ≤ 3. (4)

Similarly, as η(Cp) = p we obtain that |Sp| ≤ p− 1 and |S2p| ≥ p follows.
Since η(ϕ(G)) = η(C2

2 ) = 4, S2p has a decomposition

S2p = T1 · · ·TmT

with |Ti| = 2,σ(Ti) ∈ ker(ϕ) = Cp for every i ∈ [1,m] and |T | ≤ 3.
If there is a short zero-sum subsequence of σ(T1) · . . . · σ(Tm) · Sp , i.e., there

is a subset I ⊂ [1,m] and a subsequence T0|Sp such that T0
�

i∈I σ(Ti) is a short
zero-sum sequence over Cp, then T0

�
i∈I Ti is a zero-sum subsequence of S with

k(T0
�

i∈I Ti) = k(T0) +
�

i∈I k(Ti) = |T0|
p + |I|

p ≤ 1, a contradiction. Therefore,
σ(T1) · . . . · σ(Tm) ·Sp contains no short zero-sum subsequence over ker(ϕ) = Cp. It
follows that

m + |Sp| ≤ η(Cp)− 1 = p− 1. (5)

From |T | ≤ 3 and |Ti| = 2 we derive that m ≥ |S2p|−3
2 . This together with (5)

gives that
|S2p| + 2|Sp| ≤ 2p + 1. (6)

By (3), (4), and (6) we obtain that

2p + 2− 3 + |Sp| ≤ |S|− |S2| + |Sp| = |S2p| + 2|Sp| ≤ 2p + 1

and so |Sp| ≤ 2. Hence, |S2p| ≥ 2p−3 ≥ η(Cp). Therefore, there exists a subsequence
R | S2p such that σ(R) ∈ ker(ψ) and |R| ≤ p. It follows that k(R) = |R|

2p ≤
1
2 . If

|S2| = 3 then the sequence σ(R) · S2 ∈ F(C2
2 ) is of length 4, and it follows from

η(C2
2 ) = 4 that the sequence σ(R) · S2 contains a short zero-sum subsequence W

over C
2
2 . By the contradiction hypothesis we must have that W is of the form

σ(R)g where g is a term of S. So, R · g is a zero-sum subsequence of S with
k(W ) = k(R) + k(g) ≤ 1, a contradiction. Therefore, |S2| ≤ 2. Similarly to above,
by (3) and (6) we deduce that |Sp| ≤ 1 and |S2p| ≥ 2p− 1.

We show next that |S2| ≤ 1. Assume to the contrary that |S2| = 2. We assert
that ψ(S2p) contains no two disjoint short zero-sum subsequences over ψ(G) =
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Cp. Otherwise, there exist two disjoint subsequences W1,W2 of S2p such that
σ(W1),σ(W2) ∈ ker(ψ) = C

2
2 and k(W1) ≤ 1

2 , k(W2) ≤ 1
2 . Now the sequence

σ(W1) · σ(W2) · S2 ∈ F(C2
2 ) is of length 4. Similarly to the case that |S2| = 3 we

can find a tiny zero-sum subsequence of W1W2S2, a contradiction. It follows from
η(ψ(G)) = η(Cp) = p and |S2p| ≥ 2p−1 that every subsequence of ψ(S2p) of length
p−1 is zero-sumfree. Therefore, ψ(S2p) = β

|S2p| for some β ∈ ψ(G) = Cp by Lemma
2.3. Let W

� be any subsequence of S2p of length p. Then, σ(W �) ∈ ker(ψ) = C
2
2 .

Let C
2
2 \ {0, supp(S2)} = {y}. Since S contains no tiny zero-sum subsequence,

similarly to above we infer that σ(W �) = y. By the arbitrariness of the choice of
W

� we obtain that S2p = g
|S2p|. Now m in equation (5) can be chosen satisfying

m ≥ |S2p|−1
2 and therefore the equation (6) can be improved to |S2p|+2|Sp| ≤ 2p−1.

But the above inequality is impossible as |S2p| + |Sp| = 2p + 2 − |S2| = 2p. This
proves that |S2| ≤ 1. It follows from equation (6) and (3) that

|S2| = 1, |Sp| = 0 and |S2p| = 2p + 1.

By (5) we have that p−1 = 2p+1−3
2 = |ϕ(S2p)|−3

2 ≤ m ≤ p−1. Therefore, m = p−1.
Since S contains no tiny zero-sum subsequence, the sequence σ(T1) · . . . · σ(Tp−1) is
a zero-sumfree sequence over ker(ϕ) = Cp. It follows from Lemma 2.2 that

σ(T1) = · · · = σ(Tp−1) = h

for some h ∈ ker(ϕ) = Cp.
Let S(T1 · · ·Tp−1)−1 = g0g1g2g3 with S2 = g0. Since S contains no tiny zero-sum

subsequence, it follows from m = p − 1 and η(Cp) = p that ϕ(g1g2g3) contains no
short zero-sum subsequence over C

2
2 . Therefore, ϕ(g1), ϕ(g2) and ϕ(g3) are distinct

in C
2
2\{0}. Without loss of generality we assume that ϕ(g0) = ϕ(g1) = ϕ(g2)+ϕ(g3).

Let U1 = g0g1, U2 = g0g2g3, U3 = g1g2g3. Then σ(Ui) ∈ ker(ϕ) for every i ∈ [1, 3].
So, for every i ∈ [1, 3], the sequence σ(T1) · . . . ·σ(Tp−1) ·σ(Ui) = h

p−1
σ(Ui) contains

a zero-sum subsequence Vi over ker(ϕ), i.e., there exists a subset Ji ⊆ [1, p−1] such
that Vi = (Πj∈Jiσ(Tj)) · σ(Ui) for each i ∈ [1, 3]. Let Xi = Πj∈JiTj · Ui for each
i ∈ [1, 3]. Then, X1,X2 and X3 are zero-sum subsequences of S. Let ti = |Ji| for
each i ∈ [1, 3]. Then,

V1 = h
t1(g0 + g1), V2 = h

t2(g0 + g2 + g3), V3 = h
t3(g1 + g2 + g3).

Since k(Xi) > 1 for every i ∈ [1, 3], by a straightforward computation we obtain
that p+1

2 ≤ t1 ≤ p− 1, p−1
2 ≤ t2 ≤ p− 1 and t3 = p− 1. Therefore,

p + 1 ≤ t1 + t2 + 1 ≤ 2p− 1. (7)

From Vi is zero-sum over ker(ϕ) = Cp we infer that

t1h + g0 + g1 = t2h + g0 + g2 + g3 = (p− 1)h + g1 + g2 + g3 = 0.
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Therefore,

(t1h + g0 + g1) + (t2h + g0 + g2 + g3)− ((p− 1)h + g1 + g2 + g3) = 0.

This together with 2g0 = 0 gives that (t1 + t2 + 1)h = 0 ∈ ker(ϕ) = Cp. Therefore,
t1 + t2 + 1 ≡ 0 (mod p), a contradiction to (7). This completes the proof. ✷
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