SETS OF MINIMAL DISTANCES AND CHARACTERIZATIONS OF CLASS GROUPS OF KRULL MONOIDS

QINGHAI ZHONG

Abstract

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. Then every non-unit $a \in H$ can be written as a finite product of atoms, say $a=u_{1} \cdot \ldots \cdot u_{k}$. The set $\mathrm{L}(a)$ of all possible factorization lengths k is called the set of lengths of a. There is a constant $M \in \mathbb{N}$ such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference $d \in \Delta^{*}(H)$, where $\Delta^{*}(H)$ denotes the set of minimal distances of H. We study the structure of $\Delta^{*}(H)$ and establish a characterization when $\Delta^{*}(H)$ is an interval.

The system $\mathcal{L}(H)=\{\mathrm{L}(a) \mid a \in H\}$ of all sets of lengths depends only on the class group G, and a standing conjecture states that conversely the system $\mathcal{L}(H)$ is characteristic for the class group. We confirm this conjecture (among others) if the class group is isomorphic to C_{n}^{r} with $r, n \in \mathbb{N}$ and $\Delta^{*}(H)$ is not an interval.

1. Introduction and Main Results

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor (holomorphy rings in global fields are such Krull monoids and more examples will be given later). Then every non-unit of H has a factorization as a finite product of atoms (or irreducible elements), and all these factorizations are unique (i.e., H is factorial) if and only if G is trivial. Otherwise, there are elements having factorizations which differ not only up to associates and up to the order of the factors. These phenomena are described by arithmetical invariants such as sets of lengths and sets of distances. For an overview of recent developments in Factorization Theory we refer to 3].

We recall some basic concepts and then we formulate the main results of the present paper. For a finite nonempty set $L=\left\{m_{1}, \ldots, m_{k}\right\}$ of positive integers with $m_{1}<\ldots<m_{k}$, we denote by $\Delta(L)=$ $\left\{m_{i}-m_{i-1} \mid i \in[2, k]\right\}$ the set of distances of L. If a non-unit $a \in H$ has a factorization $a=u_{1} \cdot \ldots \cdot u_{k}$ into atoms u_{1}, \ldots, u_{k}, then k is called the length of the factorization, and the set $\mathrm{L}(a)$ of all possible factorization lengths k is called the set of lengths of a. Since H is Krull, every non-unit has a factorization into atoms and all sets of lengths are finite. Furthermore, all sets of lengths $\mathrm{L}(a)$ are singletons if and only if $|G| \leq 2$. Suppose that $|G| \geq 3$. Then there is an element $a \in H$ with $|\mathrm{L}(a)|>1$, and since the n-fold sumset $\mathrm{L}(a)+\ldots+\mathrm{L}(a)$ is contained in $\mathrm{L}\left(a^{n}\right)$, it follows that $\left|\mathrm{L}\left(a^{n}\right)\right|>n$ for every $n \in \mathbb{N}$. Therefore, the system $\mathcal{L}(H)=\{\mathrm{L}(a) \mid a \in H\}$ of all sets of lengths of H consists of infinitely many finite subsets of the integers, and there are arbitrarily large sets of lengths.

The set of distances $\Delta(H)$ is the union of all sets $\Delta(L)$ over all $L \in \mathcal{L}(H)$. Since the class group is finite, $\Delta(H)$ is finite, and since every class contains a prime divisor, $\Delta(H)$ is a finite interval with $\min \Delta(H)=1$ (13]; the maximum of $\Delta(H)$ is unknown in general, see [7, 15]). The set of minimal distances $\Delta^{*}(H)$ is a crucial subset of $\Delta(H)$, defined as

$$
\Delta^{*}(H)=\{\min \Delta(S) \mid S \subset H \text { is a divisor-closed submonoid with } \Delta(S) \neq \emptyset\}
$$

[^0]It has been studied by Chapman, Geroldinger, Hamidoune, Schmid et al. (see e.g., [8, Chapter 6.8], [9, 21, (4), and the original interest in $\Delta^{*}(H)$ stemmed from its occurrence in the Structure Theorem for Sets of Lengths. For convenience of the reader we formulate the Structure Theorem and recall that the given description is best possible ([8, Chapter 4.7], [24]).
Theorem A. Let H be a Krull monoid with finite class group. Then there is a constant $M \in \mathbb{N}$ such that the set of lengths $\mathrm{L}(a)$ of any non-unit $a \in H$ is an AAMP (almost arithmetical multiprogression) with difference $d \in \Delta^{*}(H)$ and bound M.

The last couple of years have seen a renewed interest in $\Delta^{*}(H)$ partly motivated by the Characterization Problem (which will be discussed below). Among others the maximum of $\Delta^{*}(H)$ has been determined (we have $\max \Delta^{*}(H)=\max \{\operatorname{r}(G)-1, \exp (G)-2\}$ by [16), and a better understanding of $\Delta^{*}(H)$ opened the door to progress in a variety of directions (e.g, [12]).

Whereas the set $\Delta(H)$ of all distances is an interval, the structure of $\Delta^{*}(H)$ is much more involved. A simple example shows that the interval $[1, r(G)-1]$ is contained in $\Delta^{*}(H)$ (Lemma 3.2) and thus $\Delta^{*}(H)$ is an interval if $r(G) \geq \exp (G)-1$. In the present paper we further study the structure of $\Delta^{*}(H)$, which allows us to establish a characterization when $\Delta^{*}(H)$ is an interval. Here is our first main result.

Theorem 1.1. Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. Suppose that $|G| \geq 3$, $\exp (G)=n, r(G)=r$, and let $k \in \mathbb{N}$ be maximal such that G has a subgroup isomorphic to C_{n}^{k}. Then

$$
\begin{aligned}
& {[1, r-1] \cup\left\{\max \left\{1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right\} \cup[\max \{1, n-k-1\}, n-2] } \\
& \subset \Delta^{*}(H) \subset\left[1, \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right] \cup[\max \{1, n-k-1\}, n-2] .
\end{aligned}
$$

In particular, the following holds:
(1) If $r \geq\left\lfloor\frac{n}{2}\right\rfloor-1$, then

$$
\Delta^{*}(H)=\left[1, \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right] \cup[\max \{1, n-k-1\}, n-2] .
$$

(2) The following statements are equivalent:
(a) $\Delta^{*}(H)$ is an interval.
(b) $\max \{1, n-k-2\} \in \Delta^{*}(H)$.
(c) $n-k-2 \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.
(d) $r+k \geq n-1$ or $\left(r+k=n-2\right.$ and $\left.G \cong C_{2 r+2}^{r}\right)$.

Thus, in particular, if $r(G) \geq\left\lfloor\frac{\exp (G)}{2}\right\rfloor-1$, then $\Delta^{*}(H)$ is completely determined. However, if $r(G)$ is small with respect to $\left\lfloor\frac{\exp (G)}{2}\right\rfloor$, then the structure of $\Delta^{*}(H)$ remains open. The complexity of this case, even for cyclic groups, can be seen from a recent paper by Plagne and Schmid who studed $\Delta^{*}(H)$ in case of cyclic class groups ($\boxed{20}$).

In order to present our second main result, we recall the Characterization Problem for class groups. The monoid $\mathcal{B}(G)$ of zero-sum sequences over G is a Krull monoid with class group isomorphic to G, every class contains a prime divisor, and the systems of sets of lengths of H and that of $\mathcal{B}(G)$ coincide. Thus $\mathcal{L}(H)=\mathcal{L}(B(G))$, and it is usual to set $\mathcal{L}(G):=\mathcal{L}(\mathcal{B}(G))$. In particular, the system of sets of lengths of H depends only on the class group G. The associated inverse question asks whether or not sets of lengths are characteristic for the class group. More precisely, the Characterization Problem for class groups can be formulated as follows (for surveys and a detailed description of the background of this problem see [8, Section 7.3], [10, page 42], [23, 6]).

Given two finite abelian groups G and G^{\prime} such that $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$. Does it follow that $G \cong G^{\prime}$?

The system $\mathcal{L}(G)$ is studied with methods from Additive Combinatorics. In particular, zero-sum theoretical invariants (such as the Davenport constant or the cross number) and the associated inverse problems play a crucial role (surveys and detailed presentations of such results can be found in [8, 10, 17]). Most of these invariants are well-understood only in a very limited number of cases (e.g., for groups of rank two, the precise value of the Davenport constant $\mathrm{D}(G)$ is known and the associated inverse problem is solved; however, if n is not a prime power and $r \geq 3$, then the precise value of the Davenport constant $\mathrm{D}\left(C_{n}^{r}\right)$ is unknown). Thus it is not surprising that most affirmative answers to the Characterization Problem so far have been restricted to those groups where we have a good understanding of the Davenport constant. These groups include elementary 2-groups, cyclic groups, and groups of rank two (for recent progress we refer to (11).

The first groups, for which the Characterization Problem was solved whereas the Davenport constant is unknown, are groups of the form C_{n}^{r}, where $r, n \in \mathbb{N}$ and $r \leq \frac{n+2}{6}$ ([14). Based on Theorem 1.1 we extend these results and give an affirmative answer to the Characterization Problem for all groups C_{n}^{r} for which $\Delta^{*}\left(C_{n}^{r}\right)$ is not an interval.

Theorem 1.2. Let G and G^{\prime} be finite abelian groups and let $k, k^{\prime} \in \mathbb{N}$ be maximal such that G has a subgroup isomorphic to $C_{\exp (G)}^{k}$ and G^{\prime} has a subgroup isomorphic to $C_{\exp \left(G^{\prime}\right)}^{k^{\prime}}$. Suppose $\mathrm{r}(G)+k \leq$ $\exp (G)-2, G \neq C_{2 \mathrm{r}(G)+2}^{\mathrm{r}(G)}$, and that $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$. Then $\exp (G)=\exp \left(G^{\prime}\right)$ and $k=k^{\prime}$. In particular,
(1) If $r(G) \geq\left\lfloor\frac{\exp (G)}{2}\right\rfloor+1$, then $r(G)=r\left(G^{\prime}\right)$.
(2) If $r(G)=k$, then $G \cong G^{\prime}$.

In Section 2 we gather the required background both on Krull monoids as well as on Additive Combinatorics as needed in the sequel. In Section 3 we study structural properties of (large) minimal non-half-factorial subsets of finite abelian groups. Finally the proof of Theorem 1.1 and 1.2 will be provided in Section 4

2. Background on Krull monoids and their sets of minimal distances

Our notation and terminology are consistent with [8, 10, 17. We denote by \mathbb{N} the set of positive integers, and for $a, b \in \mathbb{Q}$, we denote by $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$ the discrete, finite interval between a and b. If $A, B \subset \mathbb{Z}$ are subsets of the integers, then $A+B=\{a+b \mid a \in A, b \in B\}$ denotes their sumset, and $\Delta(A)$ the set of (successive) distances of A (that is, $d \in \Delta(A)$ if and only if $d=b-a$ with $a, b \in A$ distinct and $[a, b] \cap A=\{a, b\})$.

By a monoid, we mean a commutative semigroup with identity that satisfies the cancellation laws. If H is a monoid, then H^{\times}denotes the unit group and $\mathcal{A}(H)$ the set of atoms (or irreducible elements) of H. A submonoid $S \subset H$ is called divisor-closed if $a \in S, b \in H$, and b divides a imply that $b \in S$. A monoid H is said to be

- atomic if every non-unit can be written as a finite product of atoms.
- factorial if it is atomic and every atom is prime.
- half-factorial if it is atomic and $|\mathrm{L}(a)|=1$ for each non-unit $a \in H$ (equivalently, $\Delta(H)=\emptyset$).

A monoid F is factorial with $F^{\times}=\{1\}$ if and only if it is free abelian. If this holds, then the set of primes $P \subset F$ is a basis of F, we write $F=\mathcal{F}(P)$, and every $a \in F$ has a representation of the form

$$
a=\prod_{p \in P} p^{v_{p}(a)} \quad \text { with } \mathrm{v}_{p}(a) \in \mathbb{N}_{0} \quad \text { and } \quad \mathrm{v}_{p}(a)=0 \text { for almost all } p \in P .
$$

A monoid homomorphism $\quad \theta: H \rightarrow B$ is called a transfer homomorphism if it has the following properties:
(T 1) $B=\theta(H) B^{\times}$and $\theta^{-1}\left(B^{\times}\right)=H^{\times}$.
(T 2) If $u \in H, b, c \in B$ and $\theta(u)=b c$, then there exist $v, w \in H$ such that $u=v w, \theta(v) \simeq b$ and $\theta(w) \simeq c$.
If H and B are atomic monoids and $\theta: H \rightarrow B$ is a transfer homomorphism, then (see [8, Chapter 3.2])

$$
\mathcal{L}(H)=\mathcal{L}(B), \quad \Delta(H)=\Delta(B), \quad \text { and } \quad \Delta^{*}(H)=\Delta^{*}(B)
$$

Krull monoids. A monoid H is said to be a Krull monoid if it satisfies one of the following two equivalent conditions:
(a) There exists a monoid homomorphism $\varphi: H \rightarrow F$ into a free abelian monoid F such that $a \mid b$ in H if and only if $\varphi(a) \mid \varphi(b)$ in F.
(b) H is completely integrally closed and v-noetherian.

A detailed presentation of the theory of Krull monoids can be found in [18, 8]. To recall some examples, note that an integral domain is a Krull domain if and only if its multiplicative monoid of nonzero elements is a Krull monoid. Thus Property (b) shows that every integrally closed noetherian domain is a Krull domain. Rings of integers in algebraic number fields, holomorphy rings in algebraic function fields, and regular congruence monoids in these domains are Krull monoids with finite class group such that every class contains a prime divisor ([8, Section 2.11 and Examples 7.4.2]). Monoid domains and power series domains that are Krull are discussed in [19, 2], and note that every class of a Krull monoid domain contains a prime divisor. For monoids of modules that are Krull and their distribution of prime divisors, we refer the reader to [5, 1].

Sets of lengths in Krull monoids can be studied in the monoid of zero-sum sequences over its class group. To recall the basic concepts, let G be an additive finite abelian group and $G_{0} \subset G$ a subset. An element $S=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}\left(G_{0}\right)$ is called a sequence over $G_{0}, \sigma(S)=g_{1}+\ldots+g_{l}$ denotes its sum, $\mathrm{k}(S)=\sum_{i=1}^{l} \frac{1}{\operatorname{ord}\left(g_{i}\right)} \in \mathbb{Q}_{\geq 0}$ its cross number of $S,|S|=l$ its length, and $\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S) \mid g \in \operatorname{supp}(S)\right\}$ the maximal multiplicity of S. Since the embedding

$$
\mathcal{B}\left(G_{0}\right)=\left\{S \in \mathcal{F}\left(G_{0}\right) \mid \sigma(S)=0\right\} \hookrightarrow \mathcal{F}\left(G_{0}\right)
$$

satisfies Property (a) above, $\mathcal{B}\left(G_{0}\right)$ is a Krull monoid, called the monoid of zero-sum sequences over G_{0}. Its significance for the study of general Krull monoids is summarized in the following lemma (see [8, Theorem 3.4.10 and Proposition 4.3.13]).

Lemma 2.1. Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. Then there is a transfer homomorphism $\theta: H \rightarrow \mathcal{B}(G)$. In particular, we have $\mathcal{L}(H)=\mathcal{L}(\mathcal{B}(G))$ and

$$
\Delta^{*}(H)=\Delta^{*}(\mathcal{B}(G))=\left\{\min \Delta\left(\mathcal{B}\left(G_{0}\right)\right) \mid G_{0} \subset G \text { with } \Delta\left(\mathcal{B}\left(G_{0}\right)\right) \neq \emptyset\right\}
$$

Thus $\Delta^{*}(H)$ can be studied in an associated monoid of zero-sum sequences and can be tackled by methods from Additive Combinatorics. The existence of a transfer homomorphism to a monoid of zerosum sequences is not restricted to Krull monoids, but it holds true for so-called transfer Krull monoids and thus Theorem 1.1 holds true for transfer Krull monoids over finite abelian groups. We refer to [6] for a discussion of this concept and just mention one additional example. Let \mathcal{O} be a holomorphy ring in a global field K, A a central simple algebra over K, and H a classical maximal \mathcal{O}-order of A such that every stably free left R-ideal is free. Then there is a transfer homomorphism from H to the monoid of zero-sum sequences over a ray class group of \mathcal{O} ([25), Theorem 1.1]).
Zero-Sum Theory. Let G be an additive finite abelian group and $G_{0} \subset G$ a subset. We denote by $\left\langle G_{0}\right\rangle \subset G$ the subgroup generated by G_{0}. Then $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$, where $r=\mathrm{r}(G) \in \mathbb{N}_{0}$ is the rank of $G, n_{r}=\exp (G)$ is the exponent of G, and $1<n_{1}|\cdots| n_{r} \in \mathbb{N}$. It is traditional to set

$$
\mathcal{A}\left(G_{0}\right):=\mathcal{A}\left(\mathcal{B}\left(G_{0}\right)\right), \Delta\left(G_{0}\right):=\Delta\left(\mathcal{B}\left(G_{0}\right)\right), \text { and } \Delta^{*}\left(G_{0}\right):=\Delta^{*}\left(\mathcal{B}\left(G_{0}\right)\right) .
$$

Clearly, the atoms of $\mathcal{B}\left(G_{0}\right)$ are precisely the minimal zero-sum sequences over G_{0}. The set $\mathcal{A}\left(G_{0}\right)$ is finite, and $\mathrm{D}\left(G_{0}\right)=\max \left\{|S| \mid S \in \mathcal{A}\left(G_{0}\right)\right\}$ is the Davenport constant of G_{0}. The set G_{0} is called

- half-factorial if the monoid $\mathcal{B}\left(G_{0}\right)$ is half-factorial (equivalently, $\Delta\left(G_{0}\right)=\emptyset$).
- non-half-factorial if the monoid $\mathcal{B}\left(G_{0}\right)$ is not half-factorial (equivalently, $\Delta\left(G_{0}\right) \neq \emptyset$).
- minimal non-half-factorial if $\Delta\left(G_{0}\right) \neq \emptyset$ but every proper subset is half-factorial.
- an LCN-set if $\mathrm{k}(A) \geq 1$ for all $A \in \mathcal{A}\left(G_{0}\right)$.

The following simple result ([8, Proposition 6.7.3]) will be used throughout the paper without further mention.

Lemma 2.2. Let G be a finite abelian group and $G_{0} \subset G$ a subset. Then the following statements are equivalent:
(a) G_{0} is half-factorial.
(b) $\mathrm{k}(U)=1$ for every $U \in \mathcal{A}\left(G_{0}\right)$.
(c) $\mathrm{L}(B)=\{\mathrm{k}(B)\}$ for every $B \in \mathcal{B}\left(G_{0}\right)$.

We define

$$
\mathrm{m}(G)=\max \left\{\min \Delta\left(G_{0}\right) \mid G_{0} \subset G \text { is an LCN-set with } \Delta\left(G_{0}\right) \neq \emptyset\right\}
$$

and we denote by $\Delta_{1}(G)$ the set of all $d \in \mathbb{N}$ with the following property:
For every $k \in \mathbb{N}$, there exists some $L \in \mathcal{L}(G)$ which is an AAP with difference d and length $l \geq k$. Thus, by definition, if G^{\prime} is a further finite abelian group such that $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$, then $\Delta_{1}(G)=\Delta_{1}\left(G^{\prime}\right)$. The next proposition gathers the properties of $\Delta^{*}(G)$ and of $\Delta_{1}(G)$ which are needed in the sequel.

Proposition 2.3. Let G be a finite abelian group with $|G| \geq 3$ and $\exp (G)=n$.
(1) $\Delta^{*}(G) \subset \Delta_{1}(G) \subset\left\{d_{1} \in \Delta(G) \mid d_{1}\right.$ divides some $\left.d \in \Delta^{*}(G)\right\}$. In particular, max $\Delta^{*}(G)=$ $\max \Delta_{1}(G)$.
(2) $\max \Delta^{*}(G)=\max \{\exp (G)-2, \mathrm{~m}(G)\}=\max \{\exp (G)-2, \mathrm{r}(G)-1\}$. If G is a p-group, then $\mathrm{m}(G)=\mathrm{r}(G)-1$.
(3) If $k \in \mathbb{N}$ is maximal such that G has a subgroup isomorphic to C_{n}^{k}, then

$$
\Delta^{*}(G) \subset \Delta_{1}(G) \subset\left[1, \max \left\{\mathrm{~m}(G),\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right] \cup[\max \{1, n-k-1\}, n-2]
$$

and

$$
[1, r(G)-1] \cup\left\{\max \left\{1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right\} \cup[\max \{1, n-k-1\}, n-2] \subset \Delta^{*}(G) \subset \Delta_{1}(G)
$$

Proof. 1. follows from [8, Corollary 4.3.16] and 2. from [16, Theorem 1.1 and Proposition 3.2].
3. In [22, Theorem 3.2], it is proved that $\Delta^{*}(G)$ is contained in the set given above. The set $[1, r(G)-1] \cup$ $[\max \{1, n-k-1\}, n-2]$ is contained in $\Delta^{*}(G)$ by [8, Propositions 4.1.2 and 6.8.2] and $\left\{\max \left\{1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right\}$ is contained in $\Delta^{*}(G)$ by $|G| \geq 3$ and [8, Theorem 6.8.12].
3. Minimal non-half-FActorial subsets of finite abelian groups

Throughout this section, let G be an additive finite abelian group with $|G| \geq 3, \exp (G)=n$, and $\mathrm{r}(G)=r$.

We summarize the required machinery in four lemmas.

Lemma 3.1. Let $G_{0} \subset G$ a subset.
(1) For each $g \in G_{0}$,

$$
\begin{aligned}
& \operatorname{gcd}\left(\left\{\mathrm{v}_{g}(B) \mid B \in \mathcal{B}\left(G_{0}\right)\right\}\right)=\operatorname{gcd}\left(\left\{\mathrm{v}_{g}(A) \mid A \in \mathcal{A}\left(G_{0}\right)\right\}\right) \\
= & \min \left(\left\{\mathrm{v}_{g}(A) \mid \mathrm{v}_{g}(A)>0, A \in \mathcal{A}\left(G_{0}\right)\right\}\right) \\
= & \min \left(\left\{\mathrm{v}_{g}(B) \mid \mathrm{v}_{g}(B)>0, B \in \mathcal{B}\left(G_{0}\right)\right\}\right) \\
= & \min \left(\left\{k \in \mathbb{N} \mid k g \in\left\langle G_{0} \backslash\{g\}\right\rangle\right\}\right)=\operatorname{gcd}\left(\left\{k \in \mathbb{N} \mid k g \in\left\langle G_{0} \backslash\{g\}\right\rangle\right\}\right) .
\end{aligned}
$$

In particular, $\min \left(\left\{k \in \mathbb{N} \mid k g \in\left\langle G_{0} \backslash\{g\}\right\rangle\right\}\right)$ divides $\operatorname{ord}(g)$.
(2) Suppose that for each two distinct elements $h, h^{\prime} \in G_{0}$ we have $h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$. Then for any atom A with $\operatorname{supp}(A) \subsetneq G_{0}$ and any $h \in \operatorname{supp}(A)$, we have $\operatorname{gcd}\left(v_{h}(A), \operatorname{ord}(h)\right)>1$.
(3) If G_{0} is minimal non-half-factorial, then there exists a minimal non-half-factorial subset $G_{0}^{*} \subset G$ with $\left|G_{0}\right|=\left|G_{0}^{*}\right|$ and a transfer homomorphism $\theta: \mathcal{B}\left(G_{0}\right) \rightarrow \mathcal{B}\left(G_{0}^{*}\right)$ such that the following properties are satisfied:
(a) For each $g \in G_{0}^{*}$, we have $g \in\left\langle G_{0}^{*} \backslash\{g\}\right\rangle$.
(b) For each $B \in \mathcal{B}\left(G_{0}\right)$, we have $\mathrm{k}(B)=\mathrm{k}(\theta(B))$.
(c) If G_{0}^{*} has the property that for each $h \in G_{0}^{*}, h \notin\langle E\rangle$ for any $E \subsetneq G_{0}^{*} \backslash\{h\}$, then G_{0} also has the property.
Proof. See [16, Lemma 2.6].

Lemma 3.2.

(1) If $g \in G$ with $\operatorname{ord}(g) \geq 3$, then $\operatorname{ord}(g)-2 \in \Delta^{*}(G)$. In particular, $n-2 \in \Delta^{*}(G)$.
(2) If $r \geq 2$, then $[1, r-1] \subset \Delta^{*}(G)$.
(3) Let $G_{0} \subset G$ a subset.
(a) If there exists an $U \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(U)<1$, then $\min \Delta\left(G_{0}\right) \leq \exp (G)-2$.
(b) If G_{0} is an LCN-set, then $\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2$.

Proof. See [8, Proposition 6.8.2 and Lemmas 6.8.5 and 6.8.6].

Lemma 3.3. Let $G_{0} \subset G$ be a non-half-factorial subset satisfying the following two conditions:
(a) There is some $g \in G_{0}$ such that $\Delta\left(G_{0} \backslash\{g\}\right)=\emptyset$.
(b) There is some $U \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(U)=1$ and $\operatorname{gcd}\left(\mathrm{v}_{g}(U), \operatorname{ord}(g)\right)=1$.

Then $\mathrm{k}\left(\mathcal{A}\left(G_{0}\right)\right) \subset \mathbb{N}$ and

$$
\min \Delta\left(G_{0}\right) \mid \operatorname{gcd}\left\{\mathrm{k}(A)-1 \mid A \in \mathcal{A}\left(G_{0}\right)\right\}
$$

Note that the conditions hold if $\Delta\left(G_{1}\right)=\emptyset$ for each $G_{1} \subsetneq G_{0}$ and there exists some G_{2} such that $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$ and $\left|G_{2}\right| \leq\left|G_{0}\right|-2$.

Proof. The first statement follows from [8, Lemma 6.8.5]. If $\Delta\left(G_{1}\right)=\emptyset$ for all $G_{1} \subsetneq G_{0}$, then Condition (a) holds. Let $G_{2} \subsetneq G_{1} \subsetneq G_{0}$ with $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$. If $g \in G_{1} \backslash G_{2}$, then $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$ implies that there is some $U \in \mathcal{A}\left(G_{1}\right)$ with $\mathrm{v}_{g}(U)=1$, and since $G_{1} \subsetneq G_{0}$, it follows that $\mathrm{k}(U)=1$.

Lemma 3.4. Let $G_{0} \subset G$ be a subset, $g \in G_{0} \backslash\{0\}$, and $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$. Then for each prime p dividing $\operatorname{ord}(g)$, there exists an atom $A \in \mathcal{A}\left(G_{0}\right)$ with $2 \leq|\operatorname{supp}(A)| \leq r(G)+1, \mathrm{v}_{g}(A) \leq \operatorname{ord}(g) / 2, \mathrm{v}_{g}(A) \mid \operatorname{ord}(g)$, and $p \nmid \mathrm{v}_{g}(A)$. In particular,
(1) If $\left|G_{0}\right| \geq r(G)+2$, then there exist $s_{0}<\operatorname{ord}(g)$ and $E \subsetneq G_{0} \backslash\{g\}$ such that $s_{0} g \in\langle E\rangle$.
(2) If $\operatorname{ord}(g)$ is a prime power, then there exists a subset $E \subset G_{0} \backslash\{g\}$ with $|E| \leq r(G)$ such that $g \in\langle E\rangle$.

Proof. We set $\exp (G)=n=p_{1}^{k_{1}} \cdot \ldots \cdot p_{t}^{k_{t}}$, where $t, k_{1}, \ldots, k_{t} \in \mathbb{N}$ and p_{1}, \ldots, p_{t} are distinct primes. Let $\nu \in[1, t]$ with $p_{\nu} \mid \operatorname{ord}(g)$. Since $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$, it follows that $0 \neq \frac{n}{p_{\nu}^{k_{\nu}}} g \in G_{\nu}=\left\langle\left.\frac{n}{p_{\nu}^{k_{\nu}}} h \right\rvert\, h \in G_{0} \backslash\{g\}\right\rangle$. Obviously, G_{ν} is a p_{ν}-group. Let $E_{\nu} \subset G_{0} \backslash\{g\}$ be minimal such that $\frac{n}{p_{\nu}^{k_{\nu}}} g \in\left\langle\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}\right\rangle$. Since $\left\langle\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}\right\rangle \subset$ G_{ν} and G_{ν} is a p_{ν}-group, it follows that

$$
1 \leq\left|E_{\nu}\right|=\left|\frac{n}{p_{\nu}^{k_{\nu}}} E_{\nu}\right| \leq \mathrm{r}\left(G_{\nu}\right) \leq \mathrm{r}(G) .
$$

Let $d_{\nu} \in \mathbb{N}$ be minimal such that $d_{\nu} g \in\left\langle E_{\nu}\right\rangle$. Since $0 \neq \frac{n}{p_{\nu}^{k}} g \in\left\langle E_{\nu}\right\rangle$, it follows that $d_{\nu}<\operatorname{ord}(g)$. By Lemma 3.1 $1, d_{\nu} \left\lvert\, \operatorname{gcd}\left(\frac{n}{p_{\nu \nu}^{k}}, \operatorname{ord}(g)\right)\right.$ and there exists an atom U_{ν} such that $\mathrm{v}_{g}\left(U_{\nu}\right)=d_{\nu}$ and $\mid \operatorname{supp}\left(U_{\nu}\right) \backslash$ $\{g\}\left|\leq\left|E_{\nu}\right| \leq r(G)\right.$. Therefore $| \operatorname{supp}\left(U_{\nu}\right)\left|\leq r(G)+1, d_{\nu}\right| \operatorname{ord}(g)$, and $p_{\nu} \nmid d_{\nu}$. Since $p_{\nu} \mid \operatorname{ord}(g)$, it follows that $d_{\nu} \leq \operatorname{ord}(g) / 2$ and $\left|\operatorname{supp}\left(U_{\nu}\right)\right| \geq 2$.

If $\left|G_{0}\right| \geq \mathrm{r}(G)+2$, then $\left|E_{\nu}\right| \leq \mathrm{r}(G)<\left|G_{0} \backslash\{g\}\right|$ implies that $E_{\nu} \subsetneq G_{0} \backslash\{g\}$, and the assertion holds with $E=E_{\nu}$ and $s_{0}=d_{\nu}$.

If $\operatorname{ord}(g)$ is a prime power, then $\operatorname{ord}(g)$ is a power of p_{ν} which implies that $\operatorname{gcd}\left(\frac{n}{p_{\nu}^{k_{\nu}}}, \operatorname{ord}(g)\right)=1$ whence $d_{\nu}=1$ and $g \in\left\langle E_{\nu}\right\rangle$.

Lemma 3.5. Let $G_{0} \subset G$ be a minimal non-half-factorial LCN-set with $\left|G_{0}\right| \geq r+2$ such that $h \in\left\langle G_{0} \backslash\right.$ $\{h\}\rangle$ for every $h \in G_{0}$. Suppose that for each two distinct elements $h, h^{\prime} \in G_{0}$, we have $h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$, and each atom $A \in \mathcal{A}\left(G_{0}\right)$ with $\operatorname{supp}(A)=G_{0}$ has cross number $\mathrm{k}(A)>1$. Then $\min \Delta\left(G_{0}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor-1$.

Proof. We choose an element $g \in G_{0}$. If ord (g) is a prime power, then there exists $E \subset G_{0} \backslash\{g\}$ such that $g \in\langle E\rangle$ and $|E| \leq r<\left|G_{0}\right|-1$ by Lemma 3.4 2 , a contradiction to the assumption on G_{0}. Thus $\operatorname{ord}(g)$ is not a prime power.

Let $s \in \mathbb{N}$ be minimal such that there exists a subset $E \subsetneq G_{0} \backslash\{g\}$ with $s g \in\langle E\rangle$, and by Lemma 3.4.1, we observe that $s<\operatorname{ord}(g)$. Let $E \subsetneq G_{0} \backslash\{g\}$ be minimal such that $s g \in\langle E\rangle$. By Lemma 3.1], there is an atom V with $\mathrm{v}_{g}(V)=s \mid \operatorname{ord}(g)$ and $\operatorname{supp}(V)=\{g\} \cup E \subsetneq G_{0}$. By Lemma 3.1,2, for each $h \in \operatorname{supp}(V), \mathrm{v}_{h}(V) \geq 2$ which implies that $s \geq 2$. Thus there is a prime $p \in \mathbb{N}$ dividing s and hence $p|s| \operatorname{ord}(g)$. By Lemma 3.4. there exists an atom U_{1} such that $\left|\operatorname{supp}\left(U_{1}\right)\right| \leq r+1, \mathrm{v}_{g}\left(U_{1}\right) \mid \operatorname{ord}(g)$, and $p \nmid \mathrm{v}_{g}\left(U_{1}\right)$, and therefore $\operatorname{supp}\left(U_{1}\right) \subsetneq G_{0}$.

Let $d=\operatorname{gcd}\left(s, \mathrm{v}_{g}\left(U_{1}\right)\right)$. Then $d<s<\mathrm{v}_{g}\left(U_{1}\right)$ and there exist $x_{1} \in\left[1, \frac{\operatorname{ord}(g)}{s}-1\right]$ and $x_{2} \in\left[1, \frac{\operatorname{ord}(g)}{\mathrm{v}_{g}\left(U_{1}\right)}-1\right]$ such that $d+\operatorname{ord}(g)=x_{1} s+x_{2} \vee_{g}\left(U_{1}\right)$. Let $V^{x_{1}} U_{1}^{x_{2}}=g^{\operatorname{ord}(g)} \cdot W$, where $W \in \mathcal{B}\left(G_{0}\right)$ with $\vee_{g}(W)=d$, and let W_{1} be an atom dividing W with $\mathrm{v}_{g}\left(W_{1}\right)>0$. Since $\mathrm{v}_{g}\left(W_{1}\right) \leq d<s$, the minimality of s implies that $\operatorname{supp}\left(W_{1}\right)=G_{0}$ and hence $\mathrm{k}\left(W_{1}\right)>1$. Since G_{0} is minimal non-half-factorial, we have that $\mathrm{k}(V)=\mathrm{k}\left(U_{1}\right)=1$. Therefore there exists $l \in \mathbb{N}$ with $2 \leq l<x_{1}+x_{2}$ such that $\left\{l, x_{1}+x_{2}\right\} \subset \mathrm{L}\left(V^{x_{1}} U_{1}^{x_{2}}\right)$. Let $W=X_{1} \cdot \ldots \cdot X_{x_{1}+x_{2}}$ and $g^{\operatorname{ord}(g)}=g^{y_{1}} \cdot \ldots \cdot g^{y_{x_{1}+x_{2}}}$ such that $X_{i} g^{y_{i}}=V$ for each $i \in\left[1, x_{1}\right]$ and $X_{i} g^{y_{i}}=U_{1}$ for each $i \in\left[x_{1}+1, x_{1}+x_{2}\right]$, where $y_{1}, \ldots, y_{x_{1}+x_{2}} \in \mathbb{N}$. If there exist distinct $i, j \in\left[1, x_{1}+x_{2}\right]$ such that $y_{i}=y_{j}=1$, then $2 \mathrm{v}_{g}(W)+2=2 d+2 \leq \mathrm{v}_{g}\left(X_{i} g^{y_{i}} X_{j} g^{y_{j}}\right) \leq y_{i}+y_{j}+\mathrm{v}_{g}(W)$ which implies that $y+i+y_{j} \geq \mathrm{v}_{g}(W)+2 \geq 3$, a contradiction. Therefore $\left|\left\{i \in\left[1, x_{1}+x_{2}\right] \mid y_{i}=1\right\}\right| \leq 1$. It follows that $1+2\left(x_{1}+x_{2}-1\right) \leq \operatorname{ord}(g)$. Then

$$
\min \Delta\left(G_{0}\right) \leq x_{1}+x_{2}-l \leq \frac{\operatorname{ord}(g)+1}{2}-2 \leq\left\lfloor\frac{n}{2}\right\rfloor-1
$$

Lemma 3.6. Let $G_{0} \subset G$ be a minimal non-half-factorial LCN-set with $\left|G_{0}\right| \geq r+2$ such that $h \in$ $\left\langle G_{0} \backslash\{h\}\right\rangle$ for every $h \in G_{0}$. Suppose that one of the following properties is satisfied:
(a) For each two distinct elements $h, h^{\prime} \in G_{0}$, we have $h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$, and there is an atom $A \in \mathcal{A}\left(G_{0}\right)$ with $\mathrm{k}(A)=1$ and $\operatorname{supp}(A)=G_{0}$.
(b) There is a subset $G_{2} \subset G_{0}$ such that $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$ and $\left|G_{2}\right| \leq\left|G_{0}\right|-2$.

Then $\min \Delta\left(G_{0}\right) \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.

Proof. Assume to the contrary that $\min \Delta\left(G_{0}\right) \geq \max \left\{r,\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Then Lemma [3.23.(b) implies that $\left|G_{0}\right| \geq 2+\min \Delta\left(G_{0}\right) \geq \frac{n}{2}+1$. If Property (a) is satisfied, then there exists some $g \in G_{0}$ such that $\mathrm{v}_{g}(A)=1$. By Lemma 3.3, each of the two Properties (a) and (b) implies that $\mathrm{k}(U) \in \mathbb{N}$ for each $U \in \mathcal{A}\left(G_{0}\right)$ and

$$
\min \Delta\left(G_{0}\right) \mid \operatorname{gcd}\left(\left\{\mathrm{k}(U)-1 \mid U \in \mathcal{A}\left(G_{0}\right)\right\}\right)
$$

We set

$$
\Omega_{=1}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)=1\right\} \quad \text { and } \quad \Omega_{>1}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)>1\right\}
$$

Thus for each $U_{1}, U_{2} \in \Omega_{>1}$ we have

$$
\begin{align*}
& \mathrm{k}\left(U_{1}\right) \geq \max \left\{r+1,\left\lfloor\frac{n}{2}\right\rfloor+1\right\} \quad \text { and } \tag{3.1}\\
& \quad\left(\text { either } \mathrm{k}\left(U_{1}\right)=\mathrm{k}\left(U_{2}\right) \text { or }\left|\mathrm{k}\left(U_{1}\right)-\mathrm{k}\left(U_{2}\right)\right| \geq \max \left\{r,\left\lfloor\frac{n}{2}\right\rfloor\right\}\right) .
\end{align*}
$$

Furthermore, for each $U \in \Omega_{=1}$ we have $\mathrm{h}(U) \geq 2$ (otherwise, U would divide every atom $U_{1} \in \Omega_{>1}$). We claim that

A1. For each $U \in \Omega_{>1}$, there are $A_{1}, \ldots, A_{m} \in \Omega_{=1}$, where $m \leq \frac{n+1}{2}$, such that $U A_{1} \cdot \ldots \cdot A_{m}$ can be factorized into a product of atoms from $\Omega_{=1}$.

Proof of A1. Suppose that Property (a) holds. As observed above there exists some $g \in G_{0}$ such that $\mathrm{v}_{g}(A)=1$. Lemma 3.4 implies that there is an atom X such that $2 \leq|\operatorname{supp}(X)| \leq \mathrm{r}(G)+1$ and $1 \leq \mathrm{v}_{g}(X) \leq \operatorname{ord}(g) / 2$. Since $g \notin\left\langle G_{0} \backslash\{g, h\}\right\rangle$ for any $h \in G_{0} \backslash\{g\}$, it follows that $\mathrm{v}_{g}(X) \geq 2$, and $\left|G_{0}\right| \geq r+2$ implies $\operatorname{supp}(X) \subsetneq G_{0}$.

Suppose that Property (b) is satisfied. We choose an element $g \in G_{0} \backslash G_{2}$. Then $g \in\left\langle G_{2}\right\rangle$ and by Lemma 3.11, there is an atom A^{\prime} with $\mathrm{v}_{g}\left(A^{\prime}\right)=1$ and $\operatorname{supp}\left(A^{\prime}\right) \subset G_{2} \cup\{g\} \subsetneq G_{0}$. This implies that $A^{\prime} \in \Omega_{=1}$. Let $h \in G_{0}$ such that $\mathrm{v}_{h}\left(A^{\prime}\right)=\mathrm{h}\left(A^{\prime}\right)$. Since $\mathrm{h}\left(A^{\prime}\right) \geq 2$, we obtain that $A^{\left.\prime \int \frac{\operatorname{rord}(h)}{\mathrm{h}\left(A^{\prime}\right)}\right\rceil}=h^{\operatorname{ord}(h)} \cdot W$ where W is a product of $\left\lceil\frac{\operatorname{ord}(h)}{\mathrm{h}\left(A^{\prime}\right)}\right\rceil-1$ atoms and $\mathrm{v}_{g}(W)=\left\lceil\frac{\operatorname{ord}(h)}{\mathrm{h}\left(A^{\prime}\right)}\right\rceil$. Thus there exists an atom X^{\prime} with $2 \leq \mathrm{v}_{g}\left(X^{\prime}\right) \leq\left\lceil\frac{\operatorname{ord}(h)}{\mathrm{h}\left(A^{\prime}\right)}\right\rceil \leq \frac{n}{2}+1$.

Therefore both properties imply that there are $A, X \in \mathcal{A}\left(G_{0}\right)$ and $g \in G_{0}$ such that $\mathrm{k}(A)=\mathrm{k}(X)=1$, $\mathrm{v}_{g}(A)=1$, and $2 \leq \mathrm{v}_{g}(X) \leq \frac{n}{2}+1$. Let $U \in \Omega_{>1}$.

If $\operatorname{ord}(g)-\mathrm{v}_{g}(U)<\mathrm{v}_{g}(X) \leq \frac{n}{2}+1$, then

$$
U A^{\operatorname{ord}(g)-\mathrm{v}_{g}(U)}=g^{\operatorname{ord}(g)} S
$$

where $S \in \mathcal{B}\left(G_{0}\right)$ and $\operatorname{ord}(g)-\mathrm{v}_{g}(U) \leq \frac{n}{2}$. Since $\operatorname{supp}(S) \subsetneq G_{0}, S$ is a product of atoms from $\Omega_{=1}$.
If $\operatorname{ord}(g)-\mathrm{v}_{g}(U) \geq \mathrm{v}_{g}(X)$, then

$$
U X^{\left\lfloor\frac{\operatorname{ord}(g)-v_{g}(U)}{\mathrm{v}_{g}(X)}\right\rfloor} A^{\operatorname{ord}(g)-\mathrm{v}_{g}(U)-\mathrm{v}_{g}(X) \cdot\left\lfloor\frac{\operatorname{ord}(g)-\mathrm{v}_{g}(U)}{\left.\mathrm{v}_{g} X\right)}\right\rfloor}=g^{\operatorname{ord}(g)} S
$$

where S is a product of atoms from $\Omega_{=1}\left(\operatorname{because} \operatorname{supp}(S) \subsetneq G_{0}\right)$ and

$$
\begin{align*}
& \left\lfloor\frac{\operatorname{ord}(g)-\mathrm{v}_{g}(U)}{\mathrm{v}_{g}(X)}\right\rfloor+\operatorname{ord}(g)-\mathrm{v}_{g}(U)-\mathrm{v}_{g}(X) \cdot\left\lfloor\frac{\operatorname{ord}(g)-\mathrm{v}_{g}(U)}{\mathrm{v}_{g}(X)}\right\rfloor \\
& \leq \frac{\left(\operatorname{ord}(g)-\mathrm{v}_{g}(U)\right)-\left(\mathrm{v}_{g}(X)-1\right)}{\mathrm{v}_{g}(X)}+\mathrm{v}_{g}(X)-1 \\
& \leq \frac{\operatorname{ord}(g)-\mathrm{v}_{g}(U)+1}{2} \leq \frac{n+1}{2} . \quad \square \text { (Proof of } \mathbf{A} 1
\end{align*}
$$

We set

$$
\Omega_{>1}^{\prime}=\left\{A \in \mathcal{A}\left(G_{0}\right) \mid \mathrm{k}(A)=\min \left\{\mathrm{k}(B) \mid B \in \Omega_{>1}\right\}\right\} \subset \Omega_{>1},
$$

and we consider all tuples $\left(U, A_{1}, \ldots, A_{m}\right)$, where $U \in \Omega_{>1}^{\prime}, m \in \mathbb{N}$, and $A_{1}, \ldots, A_{m} \in \Omega_{=1}$, such that $U A_{1} \cdot \ldots \cdot A_{m}$ can be factorized into a product of atoms from $\Omega_{=1}$. We fix one such tuple (U, A_{1}, \ldots, A_{m}) with the property that m is minimal possible. Let

$$
\begin{equation*}
U A_{1} \cdot \ldots \cdot A_{m}=V_{1} \cdot \ldots \cdot V_{t} \quad \text { with } \quad t \in \mathbb{N} \quad \text { and } \quad V_{1}, \ldots, V_{t} \in \Omega_{=1} \tag{3.2}
\end{equation*}
$$

We observe that $\mathrm{k}(U)=t-m$ and continue with the following assertion.
A2. For each $\nu \in[1, t]$, we have $V_{\nu} \nmid U A_{1} \cdot \ldots \cdot A_{m-1}$.
Proof of A2. Assume to the contrary that there is such a $\nu \in[1, t]$, say $\nu=1$, with $V_{1} \mid U A_{1} \ldots . . . A_{m-1}$. Then there are $l \in \mathbb{N}$ and $T_{1}, \ldots, T_{l} \in \mathcal{A}\left(G_{0}\right)$ such that

$$
U A_{1} \cdot \ldots \cdot A_{m-1}=V_{1} T_{1} \cdot \ldots \cdot T_{l} .
$$

By the minimality of m, there exists some $\nu \in[1, l]$ such that $T_{\nu} \in \Omega_{>1}$, say $\nu=1$. Since

$$
\sum_{\nu=2}^{l} \mathrm{k}\left(T_{\nu}\right)=\mathrm{k}(U)+(m-1)-1-\mathrm{k}\left(T_{1}\right) \leq m-2 \leq \frac{n-3}{2}
$$

and $\mathrm{k}\left(T^{\prime}\right) \geq \frac{n}{2}$ for all $T^{\prime} \in \Omega_{>1}$, it follows that $T_{2}, \ldots, T_{l} \in \Omega_{=1}$, whence $l=1+\sum_{\nu=2}^{l} \mathrm{k}\left(T_{\nu}\right) \leq m-1$. We obtain that

$$
V_{1} T_{1} \cdot \ldots \cdot T_{l} A_{m}=U A_{1} \cdot \ldots \cdot A_{m}=V_{1} \cdot \ldots \cdot V_{t}
$$

and thus

$$
T_{1} \cdot \ldots \cdot T_{l} A_{m}=V_{2} \cdot \ldots \cdot V_{t}
$$

The minimality of m implies that $\mathrm{k}\left(T_{1}\right)>\mathrm{k}(U)$. It follows that

$$
\mathrm{k}\left(T_{1}\right)-\mathrm{k}(U)=m-1-l \leq m-2 \leq \frac{n-3}{2}<\left\lfloor\frac{n}{2}\right\rfloor \leq \mathrm{k}\left(T_{1}\right)-\mathrm{k}(U)
$$

a contradiction.

Now consider all the tuples $\left(A_{1}^{\prime}, \ldots, A_{m}^{\prime}\right)$, where $A_{1}^{\prime}, \ldots, A_{m}^{\prime} \in \Omega_{=1}$, such that $U A_{1}^{\prime} \cdot \ldots \cdot A_{m}^{\prime}$ can be factorized into a product of atoms from $\Omega_{=1}$. We fix one such tuple $\left(A_{1}^{\prime}, \ldots, A_{m}^{\prime}\right)$ such that $\left|\operatorname{supp}\left(A_{m}^{\prime}\right)\right|$ is minimal. For simplicity of notation, we suppose that $\left(A_{1}^{\prime}, \ldots, A_{m}^{\prime}\right)=\left(A_{1}, \ldots, A_{m}\right)$.

By Equation (3.2), there are $X_{1}, Y_{1}, \ldots, X_{t}, Y_{t} \in \mathcal{F}(G)$ such that

$$
\begin{aligned}
& U A_{1} \cdot \ldots \cdot A_{m-1}=X_{1} \cdot \ldots \cdot X_{t} \\
& A_{m}=Y_{1} \cdot \ldots \cdot Y_{t}, \text { and } V_{i}=X_{i} Y_{i} \text { for each } i \in[1, t]
\end{aligned}
$$

Then A2 implies that $\left|Y_{i}\right| \geq 1$ for each $i \in[1, t]$, and we set $\alpha=\left|\left\{i \in[1, t]| | Y_{i} \mid=1\right\}\right|$. If $\alpha \leq 2 m$, then

$$
n \geq\left|A_{m}\right|=\left|Y_{1}\right|+\ldots+\left|Y_{t}\right| \geq \alpha+2(t-\alpha)=2 t-\alpha \geq 2 t-2 m
$$

and hence $\min \Delta\left(G_{0}\right) \leq t-1-m \leq \frac{n}{2}-1$, a contradiction. Thus $\alpha \geq 2 m+1$. After renumbering if necessary we assume that $1=\left|Y_{1}\right|=\ldots=\left|Y_{\alpha}\right|<\left|Y_{\alpha+1}\right| \leq \ldots \leq\left|Y_{t}\right|$. Let $Y_{i}=y_{i}$ for each $i \in[1, \alpha]$ and

$$
\begin{equation*}
S_{0}=\left\{y_{1}, y_{2}, \ldots, y_{\alpha}\right\} \tag{3.3}
\end{equation*}
$$

For every $i \in[1, \alpha], V_{i} \mid y_{i} U A_{1} \cdot \ldots \cdot A_{m-1}$ whence $\mathrm{v}_{y_{i}}\left(V_{i}\right) \leq 1+\mathrm{v}_{y_{i}}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)$ and since $V_{i} \nmid$ $U A_{1} \cdot \ldots \cdot A_{m-1}$, it follows that

$$
\begin{equation*}
\mathrm{v}_{y_{i}}\left(V_{i}\right)=\mathrm{v}_{y_{i}}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)+1 . \tag{3.4}
\end{equation*}
$$

Assume to the contrary that there are distinct $i, j \in[1, \alpha]$ such that $y_{i}=y_{j}$. Then

$$
\mathrm{v}_{y_{i}}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)+1=\mathrm{v}_{y_{i}}\left(V_{i}\right)=\mathrm{v}_{y_{i}}\left(X_{i}\right)+1=\mathrm{v}_{y_{i}}\left(V_{j}\right)=\mathrm{v}_{y_{i}}\left(X_{j}\right)+1
$$

Since $X_{i} X_{j} \mid U A_{1} \cdot \ldots \cdot A_{m-1}$, we infer that

$$
\mathrm{v}_{y_{i}}\left(U A_{1} \ldots A_{m-1}\right) \geq \mathrm{v}_{y_{i}}\left(X_{i} X_{j}\right)=\mathrm{v}_{y_{i}}\left(V_{i} V_{j}\right)-2=2 \mathrm{v}_{y_{i}}\left(U A_{1} \ldots A_{m-1}\right)
$$

which implies that $\mathrm{v}_{y_{i}}\left(U A_{1} \ldots A_{m-1}\right)=0$, a contradiction to $\operatorname{supp}(U)=G_{0}$. Thus $\left|S_{0}\right|=\alpha$ and

$$
\begin{equation*}
\left|\operatorname{supp}\left(A_{m}\right)\right| \geq\left|S_{0}\right|=\alpha \geq 2 m+1 \tag{3.5}
\end{equation*}
$$

We proceed by the following assertion.
A3. $\left|\operatorname{supp}\left(A_{m}\right)\right| \leq r+1$.
Proof of A3. Assume to that contrary that $\left|\operatorname{supp}\left(A_{m}\right)\right| \geq r+2$. We fix one element $g^{\prime} \in S_{0}$. Let $s_{0} \in \mathbb{N}$ be minimal such that there exists a subset $E \subsetneq \operatorname{supp}\left(A_{m}\right) \backslash\left\{g^{\prime}\right\}$ such that $s_{0} g^{\prime} \in\langle E\rangle$. By $\left|\operatorname{supp}\left(A_{m}\right)\right| \geq r+2$, Lemma 3.4 (applied to the subset $\left.\operatorname{supp}\left(A_{m}\right) \subset G_{0}\right)$ implies that $s_{0}<\operatorname{ord}\left(g^{\prime}\right)$. Let E be a minimal subset with this property. Thus, by Lemma 3.1.1, there exists an atom A^{\prime} with $\mathrm{v}_{g^{\prime}}\left(A^{\prime}\right)=s_{0}$ and $\operatorname{supp}\left(A^{\prime}\right)=\left\{g^{\prime}\right\} \cup E \subsetneq \operatorname{supp}\left(A_{m}\right) \subset G_{0}$ which implies that $\mathrm{k}\left(A^{\prime}\right)=1$.

If $s_{0}=1$, then we assume that $g^{\prime}=y_{1}$. Since $v_{y_{1}}\left(V_{1}\right)=\mathrm{v}_{y_{1}}\left(U A_{1} \cdot \ldots \cdot A_{m-1}\right)+1$ by Equation 3.4 and $V_{1} \mid U A_{1} \cdot \ldots \cdot A_{m-1} \cdot y_{1}$, we obtain that $\left|\operatorname{supp}\left(U A_{1} \cdot \ldots \cdot A_{m-1} \cdot A^{\prime}\left(V_{1}\right)^{-1}\right)\right|<\left|G_{0}\right|$ and hence $U A_{1} \cdot \ldots \cdot A_{m-1} \cdot A^{\prime}$ can be factorized into a product of atoms from $\Omega_{=1}$, a contradiction to the minimality of $\left|\operatorname{supp}\left(A_{m}\right)\right|$.

Suppose $s_{0} \geq 2$. We distinguish two cases:
CASE 1: $\quad\left|\operatorname{supp}\left(A^{\prime}\right) \cap S_{0}\right| \geq m+1$.
We may suppose that $\left\{y_{1}, \ldots, y_{m+1}\right\} \subset \operatorname{supp}\left(A^{\prime}\right) \cap S_{0}$. Then $V_{1} \cdot \ldots \cdot V_{m+1} \mid U A_{1} \cdot \ldots \cdot A_{m-1} A^{\prime}$ and $\mathrm{k}\left(U A_{1} \cdot \ldots \cdot A_{m-1} A^{\prime}\left(V_{1} \cdot \ldots \cdot V_{m+1}\right)^{-1}\right)<\mathrm{k}(U)$. By the minimality of $\mathrm{k}(U)$, we have that $U A_{1} \cdot \ldots \cdot A_{m-1} A^{\prime}$ can be factorized into a product of atoms from $\Omega_{=1}$, a contradiction to the minimality of $\left|\operatorname{supp}\left(A_{m}\right)\right|$.

CASE 2: $\left|\operatorname{supp}\left(A^{\prime}\right) \cap S_{0}\right| \leq m$.
Let p be a prime dividing s_{0}. Lemma 3.4 (applied to the subset $\left.\operatorname{supp}\left(A_{m}\right) \subset G_{0}\right)$ implies that there exists an atom $A_{p}^{\prime} \in \mathcal{A}\left(\operatorname{supp}\left(A_{m}\right)\right)$ such that $\left|\operatorname{supp}\left(A_{p}^{\prime}\right)\right| \leq r+1<\left|\operatorname{supp}\left(A_{m}\right)\right|$ and $p \nmid \operatorname{v}_{g^{\prime}}\left(A_{p}^{\prime}\right)$.

Let $d=\operatorname{gcd}\left(s_{0}, \vee_{g^{\prime}}\left(A_{p}^{\prime}\right)\right.$. Then $d<s_{0}$ and

$$
d g^{\prime} \in\left\langle s_{0} g^{\prime}, \mathrm{v}_{g^{\prime}}\left(A_{p}^{\prime}\right) g^{\prime}\right\rangle \subset\left\langle\left(\operatorname{supp}\left(A^{\prime}\right) \cup \operatorname{supp}\left(A_{p}^{\prime}\right)\right) \backslash\left\{g^{\prime}\right\}\right\rangle
$$

Thus by minimality of s_{0}, we have $\operatorname{supp}\left(A_{m}\right) \backslash\left\{g^{\prime}\right\}=\left(\operatorname{supp}\left(A^{\prime \prime}\right) \cup \operatorname{supp}\left(A_{p}^{\prime}\right)\right) \backslash\left\{g^{\prime}\right\}$. It follows that

$$
\begin{aligned}
\left|\operatorname{supp}\left(A_{p}^{\prime}\right) \cap S_{0}\right| & \geq\left|S_{0} \backslash \operatorname{supp}\left(A^{\prime}\right)\right| \geq\left|S_{0}\right|-\left|\operatorname{supp}\left(A^{\prime}\right) \cap S_{0}\right| \\
& \geq 2 m+1-m=m+1
\end{aligned}
$$

Similar to CASE $1, U A_{1} \ldots A_{m-1} A_{p}^{\prime}$ can be factorized into a product of atoms from $\Omega_{=1}$, a contradiction to the minimality of $\left|\operatorname{supp}\left(A_{m}\right)\right|$.
$\square($ Proof of A3)

We consider all tuples $T=\left(X_{1}, Y_{1}, \ldots, X_{t}, Y_{t}\right)$, where $X_{1}, Y_{1}, \ldots, X_{t}, Y_{t} \in \mathcal{F}(G)$, such that

$$
\begin{aligned}
& U A_{1} \cdot \ldots \cdot A_{m-1}=X_{1} \cdot \ldots \cdot X_{t} \\
& A_{m}=Y_{1} \cdot \ldots \cdot Y_{t}, \text { and } V_{i}=X_{i} Y_{i} \text { for each } i \in[1, t] .
\end{aligned}
$$

After renumbering if necessary, we can assume that $\left|Y_{i}\right|=1$ for each $i \in\left[1, s_{1}\right],\left|Y_{i}\right|=2$ and $\operatorname{supp}\left(Y_{i}\right)=1$ for each $i \in\left[s_{1}+1, s_{2}\right],\left|Y_{i}\right|=2$ and $\operatorname{supp}\left(Y_{i}\right)=2$ for each $i \in\left[s_{2}+1, s_{3}\right]$, and $\left|Y_{i}\right| \geq 3$ for each $i \in\left[s_{3}+1, t\right]$, where $s_{1}, s_{2}, s_{3} \in[0, t]$. Let $F_{1}(T)=\operatorname{supp}\left(Y_{1} \cdot \ldots \cdot Y_{s_{1}}\right), F_{2}(T)=\operatorname{supp}\left(Y_{s_{1}+1} \cdot \ldots \cdot Y_{s_{2}}\right)$, $F_{3}(T)=\operatorname{supp}\left(Y_{s_{2}+1} \cdot \ldots \cdot Y_{s_{3}}\right)$, and $F_{4}(T)=\operatorname{supp}\left(Y_{s_{3}+1} \cdot \ldots \cdot Y_{t}\right)$.

Now we fix one such tuple $T=\left(X_{1}, Y_{1}, \ldots, X_{t}, Y_{t}\right)$ such that $\left(\alpha_{T}=\left|\left\{i \in[1, t]| | Y_{i} \mid=1\right\}\right|, \mid F_{1}(T) \cap\right.$ $\left.F_{3}(T) \mid\right)$ is lexicographically minimal.

A4. There exits a subset $\left\{g_{1}, \ldots, g_{\ell}\right\} \subset \operatorname{supp}\left(A_{m}\right)$ with $\ell \leq r-m$ such that $U A_{1} \cdot \ldots \cdot A_{m-1} g_{1}^{\operatorname{ord} g_{1}} \cdot \ldots \cdot g_{\ell}^{\operatorname{ord}\left(g_{\ell}\right)}$ can be factorized into a product of atoms from $\Omega_{=1}$.

Proof of A4. If $F_{1}(T) \cap F_{4}(T) \neq \emptyset$, there exist $i \in\left[1, s_{1}\right]$ and $j \in\left[s_{3}+1, t\right]$ such that $Y_{i} \cap Y_{j}=\left\{y_{i}\right\}$, where $Y_{i}=\left\{y_{i}\right\}$. By Equation (3.5), $\mathrm{v}_{y_{i}}\left(X_{i}\right) \geq 1$. Let $X_{i}^{\prime}=X_{i} y_{i}^{-1}, Y_{i}^{\prime}=Y_{i} y_{i}, X_{j}^{\prime}=X_{j} y_{i}, Y_{j}^{\prime}=Y_{j} y_{i}^{-1}$ and substitute $X_{i}, Y_{i}, X_{j}, Y_{j}$ with $X_{i}^{\prime}, Y_{i}^{\prime}, X_{j}^{\prime}, Y_{j}^{\prime}$ in the tuple $T=\left(X_{1}, Y_{1}, \ldots, X_{t}, Y_{t}\right)$. Thus we get a new tuple T^{\prime} such that $\alpha_{T^{\prime}}=\alpha_{T}-1$, a contradiction to the minimality of α_{T}. Thus $F_{1}(T) \cap F_{4}(T)=\emptyset$.

If $F_{1}(T) \cap F_{3}(T) \neq \emptyset$, there exist $i \in\left[1, s_{1}\right]$ and $j \in\left[s_{2}+1, s_{3}\right]$ such that $Y_{i} \cap Y_{j}=\left\{y_{i}\right\}$, where $Y_{i}=\left\{y_{i}\right\}$. Let $Y_{j}=\left\{y_{i}, y_{j}\right\}$, where $y_{j} \neq y_{i}$. By Equation (3.5), $\vee_{y_{i}}\left(X_{i}\right) \geq 1$. Let $X_{i}^{\prime}=X_{i} y_{i}^{-1}, Y_{i}^{\prime}=Y_{i} y_{i}, X_{j}^{\prime}=$ $X_{j} y_{i}, Y_{j}^{\prime}=Y_{j} y_{i}^{-1}$ and substitute $X_{i}, Y_{i}, X_{j}, Y_{j}$ with $X_{i}^{\prime}, Y_{i}^{\prime}, X_{j}^{\prime}, Y_{j}^{\prime}$ in the tuple $T=\left(X_{1}, Y_{1}, \ldots, X_{t}, Y_{t}\right)$. Thus we get a new tuple T^{\prime} such that $\alpha_{T^{\prime}}=\alpha_{T},\left|F_{1}\left(T^{\prime}\right) \cap F_{3}\left(T^{\prime}\right)\right|=\left|F_{1}(T) \cap F_{3}(T)\right|-1$, a contradiction to the minimality of $\left(\alpha_{T}=\left|\left\{i \in[1, t]| | Y_{i} \mid=1\right\}\right|,\left|F_{1}(T) \cap F_{3}(T)\right|\right)$. Thus $F_{1}(T) \cap F_{3}(T)=\emptyset$.

Suppose that $\left|F_{1}(T) \cap F_{2}(T)\right| \geq m$. Then let $\left\{g_{1}, \ldots, g_{m}\right\} \subset F_{1}(T) \cap F_{2}(T)$ and $Y_{i}=g_{i}, Y_{s_{1}+i}=g_{i}^{2}$, for each $i \in[1, m]$. Hence

$$
\prod_{i \in[1, m]}\left(V_{i} V_{s_{1}+i}\right) \mid U A_{1} \cdot \ldots A_{m-1} g_{1}^{\operatorname{ord}\left(g_{1}\right)} \cdot \ldots \cdot g_{m}^{\operatorname{ord}\left(g_{m}\right)}
$$

and

$$
\mathrm{k}\left(U A_{1} \cdot \ldots A_{m-1} g_{1}^{\operatorname{ord}\left(g_{1}\right)} \cdot \ldots \cdot g_{m}^{\operatorname{ord}\left(g_{m}\right)}\left(\prod_{i \in[1, m]}\left(V_{i} V_{s_{1}+i}\right)\right)^{-1}\right)=\mathrm{k}(U)-1
$$

It follows by the minimality of $\mathrm{k}(U)$ that $U A_{1} \cdot \ldots A_{m-1} g_{1}^{\operatorname{ord}\left(g_{1}\right)} \cdot \ldots \cdot g_{m}^{\operatorname{ord}\left(g_{m}\right)}$ can be factorized into a product of atoms from $\Omega_{=1}$. Note that $r+1 \geq\left|\operatorname{supp}\left(A_{m}\right)\right| \geq 2 m+1$ by $\mathbf{A} 3$ and Equation (3.3). We have that $\ell=m \leq r-m$.

Suppose that $\left|F_{1}(T) \cap F_{2}(T)\right| \leq m-1$. Then $\left|F_{1}(T) \backslash F_{2}(T)\right| \geq m+2$. Since $F_{1}(T) \cap F_{4}(T)=\emptyset$ and $F_{1}(T) \cap F_{3}(T)=\emptyset$, we let $\left\{g_{1}, \ldots, g_{m+2}\right\} \subset F_{1}(T) \backslash\left(F_{2}(T) \cup F_{3}(T) \cup F_{4}(T)\right)$ and $\operatorname{supp}\left(A_{m}\right) \backslash$ $\left\{g_{1}, \ldots, g_{m+2}\right\}=\left\{h_{1}, \ldots, h_{\ell}\right\}$, where $\ell \leq r-1-m$. We assume that $Y_{i}=g_{i}$ for each $i \in[1, m+2]$. Therefore

$$
\prod_{i \in[m+3, t]} V_{i} \mid U A_{1} \cdot \ldots A_{m-1} h_{1}^{\operatorname{ord}\left(h_{1}\right)} \cdot \ldots \cdot h_{\ell}^{\operatorname{ord}\left(h_{\ell}\right)}
$$

and
$\mathrm{k}\left(U A_{1} \cdot \ldots A_{m-1} h_{1}^{\operatorname{ord}\left(h_{1}\right)} \cdot \ldots \cdot h_{\ell}^{\operatorname{ord}\left(h_{\ell}\right)}\left(\prod_{i \in[m+3, t]} V_{i}\right)^{-1}\right)=\mathrm{k}(U)+m-1+\ell-(t-m-2) \leq r \leq \mathrm{k}(U)-1$.
It follows by the minimality of $\mathrm{k}(U)$ that $U A_{1} \cdot \ldots A_{m-1} g_{1}^{\operatorname{ord}\left(g_{1}\right)} \cdot \ldots \cdot g_{m}^{\operatorname{ord}\left(g_{m}\right)}$ can be factorized into a product of atoms from $\Omega_{=1}$.
$\square($ Proof of A4)
By A4, we consider all $I \in[1, m-1]$ and $J \in[1, \ell]$ such that $U \prod_{i \in I} A_{i} \prod_{j \in J} g_{j}^{\operatorname{ord}\left(g_{j}\right)}$ can be factorized into a product of atoms from $\Omega_{=1}$. We fix such I and J with $|I|+|J|$ is minimal. Then $|I|+|J| \leq$ $m-1+\ell \leq r-1$. Since $J \neq \emptyset$, we choose $j_{0} \in J$ and hence $U \prod_{i \in I} A_{i} \prod_{j \in J \backslash\left\{j_{0}\right\}} g_{j}^{\operatorname{ord}\left(g_{j}\right)}$ can not be factorized into a product of atoms from $\Omega_{=1}$ by the minimality of $|I|+|J|$.

Now we consider all tuples $\left(U^{\prime}, A_{1}^{\prime}, \ldots, A_{m^{\prime}-1}^{\prime}, g\right)$, where $U^{\prime} \in \Omega_{>1}^{\prime}, m^{\prime} \in \mathbb{N}, A_{1}^{\prime}, \ldots, A_{m^{\prime}-1}^{\prime} \in \Omega_{=1}$, and $g \in G_{0}$ such that $U^{\prime} A_{1}^{\prime} \ldots \ldots A_{m^{\prime}-1}^{\prime} g^{\operatorname{ord}(g)}$ can be factorized into a product of atoms from $\Omega_{=1}$ and $U^{\prime} A_{1}^{\prime} \ldots A_{m^{\prime}-1}^{\prime}$ can not be factorized into a product of atoms from $\Omega_{=1}$. We fix one such tuple ($U^{\prime}, A_{1}^{\prime}, \ldots, A_{m^{\prime}-1}^{\prime}, g$) with m^{\prime} is minimal. Thus $m^{\prime} \leq|I|+|J| \leq r-1$. Let

$$
U^{\prime} A_{1}^{\prime} \cdot \ldots A_{m^{\prime}-1}^{\prime} g^{\operatorname{ord}(g)}=W_{1} \cdot \ldots \cdot W_{t^{\prime}}, \text { where } W_{1}, \ldots, W_{t^{\prime}} \in \Omega_{=1}
$$

and we claim that
A5. For each $\nu \in\left[1, t^{\prime}\right]$, we have $W_{\nu} \nmid U^{\prime} A_{1}^{\prime} \cdot \ldots \cdot A_{m^{\prime}-1}^{\prime}$.
Proof of A5. Assume to the contrary that there is such a $\nu \in\left[1, t^{\prime}\right]$, say $\nu=1$, with $W_{1} \mid U^{\prime} A_{1}^{\prime} \ldots$. $A_{m^{\prime}-1}^{\prime}$. Then there are $l \in \mathbb{N}$ and $T_{1}, \ldots, T_{l} \in \mathcal{A}\left(G_{0}\right)$ such that

$$
U^{\prime} A_{1}^{\prime} \cdot \ldots \cdot A_{m^{\prime}-1}^{\prime}=W_{1} T_{1} \cdot \ldots \cdot T_{l} .
$$

Since $U^{\prime} A_{1}^{\prime} \ldots A_{m^{\prime}-1}^{\prime}$ can not be factorized into a product of atoms from $\Omega_{=1}$, there exists some $\nu \in[1, l]$ such that $T_{\nu} \in \Omega_{>1}$, say $\nu=1$, and $T_{1} \cdot \ldots \cdot T_{l}$ can not be factorized into a product of atoms from $\Omega_{=1}$. Since

$$
\sum_{\nu=2}^{l} \mathrm{k}\left(T_{\nu}\right)=\mathrm{k}\left(U^{\prime}\right)+\left(m^{\prime}-1\right)-1-\mathrm{k}\left(T_{1}\right) \leq m^{\prime}-2 \leq r-3,
$$

and $\mathrm{k}\left(T^{\prime}\right) \geq r+1$ for all $T^{\prime} \in \Omega_{>1}$, it follows that $T_{2}, \ldots, T_{l} \in \Omega_{=1}$, whence $l=1+\sum_{\nu=2}^{l} \mathrm{k}\left(T_{\nu}\right) \leq m^{\prime}-1$. We obtain that

$$
W_{1} T_{1} \cdot \ldots \cdot T_{l} g^{\operatorname{ord}(g)}=U^{\prime} A_{1}^{\prime} \cdot \ldots \cdot A_{m^{\prime}-1} g^{\operatorname{ord}(g)}=W_{1} \cdot \ldots \cdot W_{t^{\prime}}
$$

and thus

$$
T_{1} \cdot \ldots \cdot T_{l} g^{\operatorname{ord}(g)}=W_{2} \cdot \ldots \cdot W_{t^{\prime}}
$$

Since $T_{1} \cdot \ldots \cdot T_{l}$ can not be factorized into a product of atoms from $\Omega_{=1}$, we obtain that $\mathrm{k}\left(T_{1}\right)>\mathrm{k}(U)$ by the minimality of m^{\prime}. It follows that

$$
\mathrm{k}\left(T_{1}\right)-\mathrm{k}\left(U^{\prime}\right)=m^{\prime}-1-l \leq m^{\prime}-2 \leq r-3<r \leq \mathrm{k}\left(T_{1}\right)-\mathrm{k}(U)
$$

a contradiction.

Let $U^{\prime} A_{1}^{\prime} \cdot \ldots \cdot A_{m^{\prime}-1}^{\prime}=X_{1}^{\prime} \cdot \ldots \cdot X_{t^{\prime}}^{\prime}$ and $g^{\operatorname{ord}(g)}=g^{y_{1}} \cdot \ldots \cdot g^{y_{t^{\prime}}}$ such that $W_{i}=X_{i}^{\prime} g^{y_{i}}$ for each $i \in\left[1, t^{\prime}\right]$. By A5, we obtain that $y_{i} \geq 1$ for all $i \in\left[1, t^{\prime}\right]$. If $\left|\left\{i \in\left[1, t^{\prime}\right] \mid y_{i}=1\right\}\right| \geq 2$, say $y_{1}=y_{2}=1$, then $\mathrm{v}_{g}\left(W_{1}\right)=\mathrm{v}_{g}\left(W_{2}\right)=1+\mathrm{v}_{g}\left(U^{\prime} A_{1}^{\prime} \cdot \ldots \cdot A_{m^{\prime}-1}^{\prime}\right)$ by A5 and hence $\mathrm{v}_{g}\left(X_{1} X_{2}\right)=\mathrm{v}_{g}\left(W_{1}\right)+\mathrm{v}_{g}\left(W_{2}\right)-2=$ $2 \mathrm{v}_{g}\left(U^{\prime} A_{1}^{\prime} \ldots \ldots \cdot A_{m^{\prime}-1}^{\prime}\right) \geq \mathrm{v}_{g}\left(U^{\prime} A_{1}^{\prime} \ldots . \cdot A_{m^{\prime}-1}^{\prime}\right)+\mathrm{v}_{g}\left(X_{1} X_{2}\right)$, a contradiction. Thus $\left|\left\{i \in\left[1, t^{\prime}\right] \mid y_{i}=1\right\}\right| \leq 1$ and hence $1+2\left(t^{\prime}-1\right) \leq \operatorname{ord}(g) \leq n$. It follows that

$$
\mathrm{k}\left(U^{\prime}\right)=t^{\prime}-m^{\prime} \leq \frac{n+1}{2}-1 \leq\left\lfloor\frac{n}{2}\right\rfloor,
$$

a contradiction.

Proposition 3.7. We have $\mathrm{m}(G) \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.
Proof. Let $G_{0} \subset G$ be a non-half-factorial LCN set. We have to prove that

$$
\min \Delta\left(G_{0}\right) \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}
$$

If $G_{1} \subset G_{0}$ is non-half-factorial, then $\min \Delta\left(G_{0}\right)=\operatorname{gcd} \Delta\left(G_{0}\right) \mid \operatorname{gcd} \Delta\left(G_{1}\right)=\min \Delta\left(G_{1}\right)$. Thus we may suppose that G_{0} is minimal non-half-factorial. By Lemma 3.13.(a), we may suppose that $g \in\left\langle G_{0} \backslash\{g\}\right\rangle$ for all $g \in G_{0}$.

If $\left|G_{0}\right| \leq r+1$, then $\min \Delta\left(G_{0}\right) \leq\left|G_{0}\right|-2 \leq r-1$ by Lemma 3.2.3. Thus we may suppose that $\left|G_{0}\right| \geq r+2$ and we distinguish two cases.
CASE 1: There exists a subset $G_{2} \subset G_{0}$ such that $\left\langle G_{2}\right\rangle=\left\langle G_{0}\right\rangle$ and $\left|G_{2}\right| \leq\left|G_{0}\right|-2$.
Then Lemma 3.6 implies that $\min \Delta\left(G_{0}\right) \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.
CASE 2: Every subset $G_{1} \subset G_{0}$ with $\left|G_{1}\right|=\left|G_{0}\right|-1$ is a minimal generating set of $\left\langle G_{0}\right\rangle$.
Then for each $h \in G_{0}, G_{0} \backslash\{h\}$ is half-factorial and $h \notin\left\langle G_{0} \backslash\left\{h, h^{\prime}\right\}\right\rangle$ for any $h^{\prime} \in G_{0} \backslash\{h\}$. It follows that Lemma 3.5 and Lemma 3.6 imply that $\min \Delta\left(G_{0}\right) \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.

4. Proofs of the main theorems

In this section we give the proofs of Theorems 1.1 and 1.2 .

Proof of Theorem [1.1. Let H be a Krull monoid with finite class group G where $|G| \geq 3$ and every class contains a prime divisor. We set $\exp (G)=n, \mathrm{r}(G)=r$, and let $k \in \mathbb{N}$ be maximal such that G has a subgroup isomorphic to C_{n}^{k}. By Lemma 2.1, it suffices to prove the assertions for the Krull monoid $\mathcal{B}(G)$.

Propositions 2.3.3 and 3.7 immediately imply the required inclusions for $\Delta^{*}(G)$, namely that

$$
\begin{align*}
{[1, r-1] \cup\left\{\max \left\{1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right\} \cup[\max \{1, n-k-1\}, n-2] } \\
\subset \Delta^{*}(G) \subset\left[1, \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right] \cup[\max \{1, n-k-1\}, n-2] \tag{4.1}
\end{align*}
$$

It remains to verify the in particular statements.

1. If $r \geq\left\lfloor\frac{n}{2}\right\rfloor-1$, then $\left[1, \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right] \subset[1, r-1] \cup\left\{\max \left\{1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right\}$. Therefore $\Delta^{*}(G)=$ $\left[1, \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right] \cup[\max \{1, n-k-1\}, n-2]$ by Equation (4.1).
2. $(\mathrm{a}) \Rightarrow(\mathrm{b})$ Suppose that $\Delta^{*}(G)$ is an interval. Since $\max \{1, n-k-2\} \leq \max \{r-1, n-2\}=$ $\max \Delta^{*}(G)$, we obtain that $\max \{1, n-k-2\} \in \Delta^{*}(G)$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ Suppose that $\max \{1, n-k-2\} \in \Delta^{*}(G)$. If $n-k-2 \leq 0$, then $n-k-2 \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. If $n-k-2 \geq 1$, then $n-k-2 \in \Delta^{*}(G) \subset\left[1, \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right] \cup[n-k-1, n-2]$ by Equation 4.1] Therefore $n-k-2 \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$ Suppose that $n-k-2 \leq \max \left\{r-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. Therefore $n-k-2 \leq r-1$ or $r \leq n-k-2 \leq$ $\left\lfloor\frac{n}{2}\right\rfloor-1$. If $n-k-2 \leq r-1$, then $r+k \geq n-1$. If $r \leq n-k-2 \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, then $n-r-2 \leq n-k-2 \leq$ $\left\lfloor\frac{n}{2}\right\rfloor-1 \leq \frac{n}{2}-1$ and $r \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \leq \frac{n}{2}-1$. It follows that $n-2=n-r-2+r \leq \frac{n}{2}-1+\frac{n}{2}-1=n-2$ which implies that $n-r-2=n-k-2=\frac{n}{2}-1$ and $r=\frac{n}{2}-1$. Therefore $r=k, n=2 r+2$, and hence $G \cong C_{2 r+2}^{r}$.
(d) \Rightarrow (a) If $G \cong C_{2 r+2}^{r}$, then $\Delta^{*}(G)=[1,2 r]$ is an interval by 1. If $r+k \geq n-1$, then $r \geq\left\lfloor\frac{n}{2}\right\rfloor$ and hence $\Delta^{*}(G)=[1, r-1] \cup[\max \{1, n-k-1\}, n-2]$ is an interval by 1 .

Proof of Theorem 1.2. Let G and G^{\prime} be finite abelian groups with $\exp (G)=n, \exp \left(G^{\prime}\right)=n^{\prime}, r(G)=r$, and $r\left(G^{\prime}\right)=r^{\prime}$. Let $k, k^{\prime} \in \mathbb{N}$ be maximal such that G has a subgroup isomorphic to C_{n}^{k} and G^{\prime} has a subgroup isomorphic to $C_{n^{\prime}}^{k^{\prime}}$. Suppose that

$$
r+k \leq n-2, \quad G \not \equiv C_{2 r+2}^{r}, \quad \text { and that } \quad \mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right) .
$$

By our assumption and Theorem 1.1] 2, we have that $\Delta^{*}(G)$ is not an interval, $n-k-2 \notin \Delta^{*}(G)$, and $n-k-2 \geq \max \left\{r,\left[\frac{n}{2}\right\rfloor\right\}$. By Proposition 2.3. we obtain that $\max \Delta_{1}(G)=\max \Delta^{*}(G)=\max \{r-1, n-$ $2\}=n-2, n-k-2 \notin \Delta_{1}(G)$, and $n-k-1 \in \Delta_{1}(G)$. Note that $\mathrm{D}(G)=\mathrm{D}\left(G^{\prime}\right)$ and $\Delta_{1}(G)=\Delta_{1}\left(G^{\prime}\right)$ (see 8, Proposition 7.3.1 and Theorem 7.4.1]). Then max $\Delta_{1}\left(G^{\prime}\right)=\max \left\{r\left(G^{\prime}\right)-1, \exp \left(G^{\prime}\right)-2\right\}=\max \Delta_{1}(G)=$ $n-2, n-k-2 \notin \Delta_{1}\left(G^{\prime}\right), n-k-1 \in \Delta_{1}\left(G^{\prime}\right)$. If $r\left(G^{\prime}\right) \geq \exp \left(G^{\prime}\right)-1$, then $\Delta_{1}\left(G^{\prime}\right)=\left[1, r\left(G^{\prime}\right)-1\right]$ by Proposition 2.3, a contradiction. It follows that $\exp \left(G^{\prime}\right)=n$ by max $\Delta_{1}\left(G^{\prime}\right)=\exp \left(G^{\prime}\right)-2$. Suppose that $k^{\prime} \geq k+1$. Then $n-k-2 \in\left[n-k^{\prime}-1, n-2\right] \subset \Delta_{1}\left(G^{\prime}\right)=\Delta_{1}(G)$, a contradiction. Suppose that $k^{\prime} \leq k-1$. Then $n-k-1 \notin\left[n-k^{\prime}-1, n-2\right]$ and hence $n-k-1 \in\left[1, \max \left\{r\left(G^{\prime}\right)-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right]$. If $n-k-1 \leq \mathrm{r}\left(G^{\prime}\right)-1$, then $n-k-2 \in\left[1, \mathrm{r}\left(G^{\prime}\right)-1\right] \subset \Delta_{1}\left(G^{\prime}\right)=\Delta_{1}(G)$, a contradiction. Otherwise $n-k-1 \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, a contradiction to $n-k-2 \geq\left\lfloor\frac{n}{2}\right\rfloor$. It follows that $k=k^{\prime}$.

In particular, if $r \geq\left\lfloor\frac{n}{2}\right\rfloor+1$, then $[1, r-1] \cup[n-k-1, n-2]=\Delta_{1}(G)=\Delta_{1}\left(G^{\prime}\right)$ and hence $\left[1, r\left(G^{\prime}\right)\right] \subset[1, r-1] \subset\left[1, \max \left\{r\left(G^{\prime}\right)-1,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}\right]$. Therefore by $r \geq\left\lfloor\frac{n}{2}\right\rfloor+1$ we obtain that $r\left(G^{\prime}\right)=r$. If $\mathrm{r}(G)=k$, then $G=C_{n}^{r}$ is a subgroup of G^{\prime}. Thus $\mathrm{D}(G)=\mathrm{D}\left(G^{\prime}\right)$ implies that $G \cong G^{\prime}$.

References

[1] N.R. Baeth and A. Geroldinger, Monoids of modules and arithmetic of direct-sum decompositions, Pacific J. Math. 271 (2014), 257 - 319.
[2] Gyu Whan Chang, Every divisor class of Krull monoid domains contains a prime ideal, J. Algebra 336 (2011), 370 377.
[3] S.T. Chapman, M. Fontana, A. Geroldinger, and B. Olberding (eds.), Multiplicative Ideal Theory and Factorization Theory, vol. 170, Springer, Proceedings in Mathematics and Statistics, 2016.
[4] S.T. Chapman, W.A. Schmid, and W.W. Smith, On minimal distances in Krull monoids with infinite class group, Bull. Lond. Math. Soc. 40 (2008), $613-618$.
[5] A. Facchini, Krull monoids and their application in module theory, Algebras, Rings and their Representations (A. Facchini, K. Fuller, C. M. Ringel, and C. Santa-Clara, eds.), World Scientific, 2006, pp. $53-71$.
[6] A. Geroldinger, Sets of lengths, arXiv:1509.07462
[7] A. Geroldinger, D.J. Grynkiewicz, and W.A. Schmid, The catenary degree of Krull monoids I, J. Théor. Nombres Bordx. 23 (2011), 137 - 169.
[8] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[9] A. Geroldinger and Y. O. Hamidoune, Zero-sumfree sequences in cyclic groups and some arithmetical application, J. Théor. Nombres Bordx. 14 (2002), 221 - 239.
[10] A. Geroldinger and I. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser, 2009.
[11] A. Geroldinger and W. A. Schmid, A characterization of class groups via sets of lengths, arXiv:1503.04679
[12] \qquad The system of sets of lengths in Krull monoids under set addition, Rev. Mat. Iberoam. 32 (2016), $571-588$.
[13] A. Geroldinger and P. Yuan, The set of distances in Krull monoids, Bull. Lond. Math. Soc. 44 (2012), 1203 - 1208.
[14] A. Geroldinger and Q. Zhong, A characterization of class groups via sets of lengths II, J. Théor. Nombres Bordx., to appear.
[15] \qquad , The catenary degree of Krull monoids II, J. Australian Math. Soc. 98 (2015), $324-354$.
[16] e set of minimal distances Krull monoids, Acta Arith. 173 (2016), 97 - 120.
[17] D.J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics, Springer, 2013.
[18] F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory, Marcel Dekker, 1998.
[19] H. Kim and Y. S. Park, Krull domains of generalized power series, J. Algebra 237 (2001), 292 - 301.
[20] A. Plagne and W.A. Schmid, On congruence half-factorial Krull monoids with cyclic class group, submitted.
[21] W.A. Schmid, Differences in sets of lengths of Krull monoids with finite class group, J. Théor. Nombres Bordx. 17 (2005), $323-345$.
[22] , Arithmetical characterization of class groups of the form $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$ via the system of sets of lengths, Abh. Math. Semin. Univ. Hamb. 79 (2009), 25 - 35.
[23] , Characterization of class groups of Krull monoids via their systems of sets of lengths: a status report, Number Theory and Applications: Proceedings of the International Conferences on Number Theory and Cryptography (S.D. Adhikari and B. Ramakrishnan, eds.), Hindustan Book Agency, 2009, pp. 189 - 212.
[24] _ , A realization theorem for sets of lengths, J. Number Theory 129 (2009), 990 - 999.
[25] D. Smertnig, Sets of lengths in maximal orders in central simple algebras, J. Algebra 390 (2013), $1-43$.
Qinghai Zhong, University of Graz, NAWI Graz, Institute for Mathematics and Scientific Computing, Heinrichstrasse 36, 8010 Graz, Austria

E-mail address: qinghai.zhong@uni-graz.at
URL: http://qinghai-zhong.weebly.com

[^0]: 2010 Mathematics Subject Classification. 11B30, 11R27, 13A05, 13F05, 20M13.
 Key words and phrases. Krull monoids, class groups, arithmetical characterizations, sets of lengths, zero-sum sequences, Davenport constant.

 This work was supported by the Austrian Science Fund FWF, Project Number P28864-N35.

