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SYSTEMS OF SETS OF LENGTHS:

TRANSFER KRULL MONOIDS VERSUS WEAKLY KRULL MONOIDS

ALFRED GEROLDINGER AND WOLFGANG A. SCHMID AND QINGHAI ZHONG

Abstract. Transfer Krull monoids are monoids which allow a weak transfer homomorphism to a com-
mutative Krull monoid, and hence the system of sets of lengths of a transfer Krull monoid coincides with
that of the associated commutative Krull monoid. We unveil a couple of new features of the system of
sets of lengths of transfer Krull monoids over finite abelian groups G, and we provide a complete descrip-
tion of the system for all groups G having Davenport constant D(G) = 5 (these are the smallest groups
for which no such descriptions were known so far). Under reasonable algebraic finiteness assumptions,

sets of lengths of transfer Krull monoids and of weakly Krull monoids satisfy the Structure Theorem for
Sets of Lengths. In spite of this common feature we demonstrate that systems of sets of lengths for a
variety of classes of weakly Krull monoids are different from the system of sets of lengths of any transfer
Krull monoid.

1. Introduction

By an atomic monoid we mean a cancelative semigroup with unit element such that every nonunit can
be written as a finite product of irreducible elements. Let H be an atomic monoid. If a ∈ H is a nonunit
and a = u1 · . . . · uk is a factorization of a into k irreducible elements, then k is called a factorization
length and the set L(a) ⊂ N of all possible factorization lengths is called the set of lengths of a. Then
L(H) = {L(a) | a ∈ H} is the system of sets of lengths of H . Under a variety of noetherian conditions on
H (e.g., H is the monoid of nonzero elements of a commutative noetherian domain) all sets of lengths are
finite. Furthermore, if there is some element a ∈ H with |L(a)| > 1, then |L(aN )| > N for all N ∈ N. Sets
of lengths (together with invariants controlling their structure, such as elasticities and sets of distances)
are a well-studied means for describing the arithmetic structure of monoids.

Let H be a transfer Krull monoid. Then, by definition, there is a weak transfer homomorphism
θ : H → B(G0), where B(G0) denotes the monoid of zero-sum sequences over a subset G0 of an abelian
group, and hence L(H) = L

(
B(G0)

)
. A special emphasis has always been on the case where G0 is a

finite abelian group. Thus let G be a finite abelian group and we use the abbreviation L(G) = L
(
B(G)

)
.

It is well-known that sets of lengths in L(G) are highly structured (Proposition 3.2), and the standing
conjecture is that the system L(G) is characteristic for the group G. More precisely, if G′ is a finite
abelian group such that L(G) = L(G′), then G and G′ are isomorphic (apart from two well-known trivial
pairings; see Conjecture 3.4). This conjecture holds true, among others, for groups G having rank at
most two, and its proof uses deep results from additive combinatorics which are not available for general
groups. Thus there is a need for studying L(G) with a new approach. In Section 3, we unveil a couple of
properties of the system L(G) which are first steps on a new way towards Conjecture 3.4.

In spite of all abstract work on systems L(G), they have been written down explicitly only for groups G
having Davenport constant D(G) ≤ 4, and this is not difficult to do (recall that a group G has Davenport
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constant D(G) ≤ 4 if and only if either |G| ≤ 4 or G is an elementary 2-group of rank three). In Section
4 we determine the systems L(G) for all groups G having Davenport constant D(G) = 5.

Commutative Krull monoids are the classic examples of transfer Krull monoids. In recent years a wide
range of monoids and domains has been found which are transfer Krull but which are not commutative
Krull monoids. Thus the question arose which monoids H have systems L(H) which are different from
systems of sets of lengths of transfer Krull monoids. Commutative v-noetherian weakly Krull monoids
and domains are the best investigated class of monoids beyond commutative Krull monoids (numerical
monoids as well as one-dimensional noetherian domains are v-noetherian weakly Krull). Clearly, weakly
Krull monoids can be half-factorial and half-factorial monoids are transfer Krull monoids. Similarly, it
can happen both for weakly Krull monoids as well as for transfer Krull monoids that all sets of lengths are
arithmetical progressions with difference 1. Apart from such extremal cases, we show in Section 5 that
systems of sets of lengths of a variety of classes of weakly Krull monoids are different from the system of
sets of lengths of any transfer Krull monoid.

2. Background on sets of lengths

We denote by N the set of positive integers, and for real numbers a, b ∈ R, we denote by [a, b] = {x ∈
Z | a ≤ x ≤ b} the discrete interval between a and b, and by an interval we always mean a finite discrete
interval of integers.

Let A,B ⊂ Z be subsets of the integers. Then A+B = {a+ b | a ∈ A, b ∈ B} is the sumset of A and
B. We set −A = {−a | a ∈ A} and for an integer m ∈ Z, m+ A = {m}+A is the shift of A by m. For
m ∈ N, we denote by mA = A+ . . .+A the m-fold subset of A and by m ·A = {ma | a ∈ A} the dilation
of A by m. If A ⊂ N, we denote by ρ(A) = supA/minA ∈ Q≥1 ∪ {∞} the elasticity of A and we set
ρ({0}) = 1. A positive integer d ∈ N is called a distance of A if there are a, b ∈ A with b− a = d and the
interval [a, b] contains no further elements of A. We denote by ∆(A) the set of distances of A. Clearly,
∆(A) = ∅ if and only if |A| ≤ 1, and A is an arithmetical progression if and only if |∆(A)| ≤ 1.

Let G be an additive abelian group. A family (ei)i∈I of elements of G is said to be independent if
ei 6= 0 for all i ∈ I and, for every family (mi)i∈I ∈ Z(I),

∑

i∈I

miei = 0 implies miei = 0 for all i ∈ I .

A family (ei)i∈I is called a basis for G if ei 6= 0 for all i ∈ I and G =
⊕

i∈I〈ei〉. A subset G0 ⊂ G is said
to be independent if the tuple (g)g∈G0

is independent. For every prime p ∈ P, we denote by rp(G) the
p-rank of G.

Sets of Lengths. We say that a semigroup S is cancelative if for all elements a, b, c ∈ S, the equation
ab = ac implies b = c and the equation ba = ca implies b = c. Throughout this manuscript, a monoid
means a cancelative semigroup with unit element, and we will use multiplicative notation.

Let H be a monoid. An element a ∈ H is said to be invertible if there exists an element a′ ∈ H such
that aa′ = a′a = 1. The set of invertible elements of H will be denoted by H×, and we say that H is
reduced if H× = {1}. For a set P , we denote by F(P ) the free abelian monoid with basis P . Then every
a ∈ F(P ) has a unique representation in the form

a =
∏

p∈P

pvp(a) ,

where vp : F(P ) → N0 denotes the p-adic exponent.
An element a ∈ H is called irreducible (or an atom) if a /∈ H× and if, for all u, v ∈ H , a = uv implies

that u ∈ H× or v ∈ H×. We denote by A(H) the set of atoms of H . The monoid H is said to be atomic
if every a ∈ H \H× is a product of finitely many atoms of H . If a ∈ H and a = u1 · . . . · uk, where k ∈ N
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and u1, . . . , uk ∈ A(H), then we say that k is the length of the factorization. For a ∈ H \H×, we call

LH(a) = L(a) = {k ∈ N | a has a factorization of length k} ⊂ N

the set of lengths of a. For convenience, we set L(a) = {0} for all a ∈ H×. By definition, H is atomic
if and only if L(a) 6= ∅ for all a ∈ H . Furthermore, L(a) = {1} if and only if a ∈ A(H) if and only if
1 ∈ L(a). If a, b ∈ H , then L(a) + L(b) ⊂ L(ab). We call

L(H) = {L(a) | a ∈ H}

the system of sets of lengths of H . We say that H is half-factorial if |L| = 1 for every L ∈ L(H). If
H is atomic, then H is either half-factorial or for every N ∈ N there is an element aN ∈ H such that
|L(aN )| > N ([15, Lemma 2.1]). We say that H is a BF-monoid if it is atomic and all sets of lengths are
finite. Let

∆(H) =
⋃

L∈L(H)

∆(L) ⊂ N

denote the set of distances of H , and if ∆(H) 6= ∅, then min∆(H) = gcd∆(H). We denote by ∆1(H)
the set of all d ∈ N with the following property:

For every k ∈ N there exists an L ∈ L(H) of the form L = L′ ∪ {y, y + d, . . . , y + kd} ∪ L′′ where
y ∈ N and L′, L′′ ⊂ Z with maxL′ < y and y + kd < minL′′.

By definition, ∆1(H) is a subset of ∆(H). For every k ∈ N we define the kth elasticity of H . If H = H×,
then we set ρk(H) = k, and if H 6= H×, then

ρk(H) = sup{supL | k ∈ L ∈ L(H)} ∈ N ∪ {∞} .

The invariant

ρ(H) = sup{ρ(L) | L ∈ L(H)} = lim
k→∞

ρk(H)

k
∈ R≥1 ∪ {∞}

is called the elasticity of H (see [15, Proposition 2.4]). Sets of lengths of all monoids, which are in
the focus of the present paper, are highly structured (see Proposition 3.2 and Theorems 5.5 - 5.8). To
summarize the relevant concepts, let d ∈ N, M ∈ N0 and {0, d} ⊂ D ⊂ [0, d]. A subset L ⊂ Z is called
an almost arithmetical multiprogression (AAMP for short) with difference d, period D, and bound
M , if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ

where y ∈ Z is a shift parameter,

• L∗ is finite nonempty with minL∗ = 0 and L∗ = (D + dZ) ∩ [0,maxL∗], and
• L′ ⊂ [−M,−1] and L′′ ⊂ maxL∗ + [1,M ].

We say that the Structure Theorem for Sets of Lengths holds for a monoid H if H is atomic and there
exist some M ∈ N0 and a finite nonempty set ∆ ⊂ N such that every L ∈ L(H) is an AAMP with some
difference d ∈ ∆ and bound M .

Monoids of zero-sum sequences. We discuss a monoid having a combinatorial flavor whose universal
role in the study of sets of lengths will become evident at the beginning of the next section. Let G be an
additive abelian group and G0 ⊂ G a subset. Then 〈G0〉 denotes the subgroup generated by G0, and we
set G•

0 = G0 \ {0}. In additive combinatorics, a sequence (over G0) means a finite sequence of terms from
G0 where repetition is allowed and the order of the elements is disregarded, and (as usual) we consider
sequences as elements of the free abelian monoid with basis G0. Let

S = g1 · . . . · gℓ =
∏

g∈G0

gvg(S) ∈ F(G0)
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be a sequence over G0. We set −S = (−g1) · . . . · (−gℓ), and we call

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S , |S| = ℓ =
∑

g∈G

vg(S) ∈ N0 the length of S ,

σ(S) =

l∑

i=1

gi the sum of S , Σ(S) =
{∑

i∈I

gi | ∅ 6= I ⊂ [1, ℓ]
}

the set of subsequence sums of S ,

k(S) =

l∑

i=1

1

ord(gi)
the cross number of S .

The sequence S is said to be

• zero-sum free if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every proper subsequence
is zero-sum free.

The set of zero-sum sequences B(G0) = {S ∈ F(G0) | σ(S) = 0} ⊂ F(G0) is a submonoid, and the set of
minimal zero-sum sequences is the set of atoms of B(G0). For any arithmetical invariant ∗(H) defined for
a monoid H , we write ∗(G0) instead of ∗(B(G0)). In particular, A(G0) = A(B(G0)) is the set of atoms
of B(G0), L(G0) = L(B(G0)) is the system of sets of lengths of B(G0), and so on. Furthermore, we say
that G0 is half-factorial if the monoid B(G0) is half-factorial. We denote by

D(G0) = sup{|S| | S ∈ A(G0)} ∈ N0 ∪ {∞}

the Davenport constant of G0. If G0 is finite, then D(G0) is finite. Suppose that G is finite, say G ∼=
Cn1

⊕ . . .⊕ Cnr
, with r ∈ N0, 1 < n1 | . . . |nr, then r = r(G) is the rank of G, and we have

(2.1) 1 +

r∑

i=1

(ni − 1) ≤ D(G) ≤ |G| .

If G is a p-group or r(G) ≤ 2, then 1 +
∑r

i=1(ni − 1) = D(G). Suppose that |G| ≥ 3. We will use that
∆(G) is an interval with min∆(G) = 1 ([24]), and that, for all k ∈ N,

(2.2) ρ2k(G) = kD(G), kD(G) + 1 ≤ ρ2k+1(G) ≤ kD(G) + ⌊D(G)/2⌋ and ρ(G) = D(G)/2 ,

([19, Section 6.3]).

3. Sets of lengths of transfer Krull monoids

Weak transfer homomorphisms play a critical role in factorization theory, in particular in all studies of
sets of lengths. We refer to [19] for a detailed presentation of transfer homomorphisms in the commutative
setting. Weak transfer homomorphisms (as defined below) were introduced in [5, Definition 2.1] and
transfer Krull monoids were introduced in [15].

Definition 3.1. Let H be a monoid.

1. A monoid homomorphism θ : H → B to an atomic monoid B is called a weak transfer homomor-
phism if it has the following two properties:

(T1) B = B×θ(H)B× and θ−1(B×) = H×.
(WT2) If a ∈ H , n ∈ N, v1, . . . , vn ∈ A(B) and θ(a) = v1 · . . . ·vn, then there exist u1, . . . , un ∈ A(H)

and a permutation τ ∈ Sn such that a = u1 · . . . ·un and θ(ui) ∈ B×vτ(i)B
× for each i ∈ [1, n].

2. H is said to be a transfer Krull monoid (over G0) it there exists a weak transfer homomorphism
θ : H → B(G0) for a subset G0 of an abelian group G. If G0 is finite, then we say that H is a
transfer Krull monoid of finite type.
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If R is a domain and R• its monoid of cancelative elements, then we say that R is a transfer Krull
domain (of finite type) if R• is a transfer Krull monoid (of finite type). Let θ : H → B be a weak transfer
homomorphism between atomic monoids. It is easy to show that for all a ∈ H we have LH(a) = LB(θ(a))
and hence L(H) = L(B). Since monoids of zero-sum sequences are BF-monoids, the same is true for
transfer Krull monoids.

Let H∗ be a commutative Krull monoid (i.e., H∗ is commutative, completely integrally closed, and
v-noetherian). Then there is a weak transfer homomorphism β : H∗ → B(G0) where G0 is a subset of
the class group of H∗. Since monoids of zero-sum sequences are commutative Krull monoids and since
the composition of weak transfer homomorphisms is a weak transfer homomorphism again, a monoid is
a transfer Krull monoid if and only if it allows a weak transfer homomorphism to a commutative Krull
monoid. In particular, commutative Krull monoids are transfer Krull monoids. However, a transfer
Krull monoid need neither be commutative nor v-noetherian nor completely integrally closed. To give
a noncommutative example, consider a bounded HNP (hereditary noetherian prime) ring R. If every
stably free left R-ideal is free, then its multiplicative monoid of cancelative elements is a transfer Krull
monoid ([31]). A class of commutative weakly Krull domains which are transfer Krull but not Krull will
be given in Theorem 5.8. Extended lists of commutative Krull monoids and of transfer Krull monoids,
which are not commutative Krull, are given in [15].

The next proposition summarizes some key results on the structure of sets of lengths of transfer Krull
monoids.

Proposition 3.2.

1. Every transfer Krull monoid of finite type satisfies the Structure Theorem for Sets of Lengths.

2. For every M ∈ N0 and every finite nonempty set ∆ ⊂ N, there is a finite abelian group G such
that the following holds : for every AAMP L with difference d ∈ ∆ and bound M there is some
yL ∈ N such that

y + L ∈ L(G) for all y ≥ yL .

3. If G is an infinite abelian group, then

L(G) = {L ⊂ N≥2 | L is finite and nonempty } ∪ {{0}, {1}}.

Proof. 1. Let H be a transfer Krull monoid and θ : H → B(G0) be a weak transfer homomorphism where
G0 is a finite subset of an abelian group. Then L(H) = L(G0), and B(G0) satisfies the Structure Theorem
by [19, Theorem 4.4.11].

For 2. we refer to [30], and for 3. see [28] and [19, Section 7.4]. �

The inequality (2.1) and the subsequent remarks show that a finite abelian group G has Davenport
constant D(G) ≤ 4 if and only if G is cyclic of order |G| ≤ 4 or if it is isomorphic to C2 ⊕ C2 or to
C3

2 . For these groups an explicit description of their systems of sets of lengths has been given, and we
gather this in the next proposition (in Section 4 we will determine the systems L(G) for all groups G
with D(G) = 5).

Proposition 3.3.

1. If G is an abelian group, then L(G) = {y + L | y ∈ N0, L ∈ L(G•)} ⊃
{
{y}

∣∣ y ∈ N0

}
, and

equality holds if and only if |G| ≤ 2.

2. L(C3) = L(C2 ⊕ C2) =
{
y + 2k + [0, k]

∣∣ y, k ∈ N0

}
.

3. L(C4) =
{
y + k + 1 + [0, k]

∣∣ y, k ∈ N0

}
∪

{
y + 2k + 2 · [0, k]

∣∣ y, k ∈ N0

}
.

4. L(C3
2 ) =

{
y + (k + 1) + [0, k]

∣∣ y ∈ N0, k ∈ [0, 2]
}

∪
{
y + k + [0, k]

∣∣ y ∈ N0, k ≥ 3
}
∪
{
y + 2k + 2 · [0, k]

∣∣ y, k ∈ N0

}
.

Proof. See [19, Proposition 7.3.1 and Theorem 7.3.2]. �
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Let G and G′ be abelian groups. Then their monoids of zero-sum sequences B(G) and B(G′) are
isomorphic if and only if the groups G and G′ are isomorphic ([19, Corollary 2.5.7]). The standing
conjecture states that the systems of sets of lengths L(G) and L(G′) of finite groups coincide if and only
G and G′ are isomorphic (apart from the trivial cases listed in Proposition 3.3). Here is the precise
formulation of the conjecture (it was first stated in [15]).

Conjecture 3.4. Let G be a finite abelian group with D(G) ≥ 4. If G′ is an abelian group with L(G) =
L(G′), then G and G′ are isomorphic.

The conjecture holds true for groups G having rank r(G) ≤ 2, for groups of the form G = Cr
n (if r is

small with respect to n), and others ([22, 25]). But it is far open in general, and the goal of this section
is to develop new viewpoints of looking at this conjecture.

Let G be a finite abelian group with D(G) ≥ 4. If G′ is a finite abelian group with L(G) = L(G′),
then (2.2) shows that

D(G) = ρ2(G) = sup{supL | 2 ∈ L ∈ L(G)}

= sup{supL | 2 ∈ L ∈ L(G′)} = ρ2(G
′) = D(G′) .

We see from Inequality (2.1) that there are (up to isomorphism) only finitely many finite abelian groups
G′ with given Davenport constant, and hence there are only finitely many finite abelian groups G′ with
L(G) = L(G′). Thus Conjecture 3.4 is equivalent to the statement that for each m ≥ 4 and for each two
finite abelian groups G and G′ having Davenport constant D(G) = D(G′) = m the systems L(G) and
L(G′) are distinct. Therefore we have to study the set

Ωm = {L(G) | G is a finite abelian group with D(G) = m}

of all systems of sets of lengths stemming from groups having Davenport constant equal tom. If a groupG′

is a proper subgroup of G, then D(G′) < D(G) ([19, Proposition 5.1.11]) and hence L(G′) ( L(G). Thus if
D(G) = D(G′) for some group G′, then none of the groups is isomorphic to a proper subgroup of the other
one. Conversely, if G′ is a finite abelian group with L(G′) ⊂ L(G), then D(G′) = ρ2(G

′) ≤ ρ2(G) = D(G).
However, it may happen that L(G′) ( L(G) but D(G′) = D(G). Indeed, Proposition 3.3 shows that
L(C4) ( L(C3

2 ), and we will observe this phenomenon again in Section 4.

Theorem 3.5. For m ∈ N, let Ωm = {L(G) | G is a finite abelian group with D(G) = m}. Then
L(Cm−1

2 ) is a maximal element and L(Cm) is a minimal element in Ωm (with respect to set-theoretical

inclusion). Furthermore, if G is an abelian group with D(G) = m and L(G) ⊂ L(Cm−1
2 ), then G ∼= Cm

or G ∼= Cm−1
2 .

Proof. If m ∈ [1, 2], then |Ωm| = 1 and hence all assertions hold. Since C3 and C2 ⊕ C2 are the only
groups (up to isomorphism) with Davenport constant three, and since L(C3) = L(C2

2 ) by Proposition
3.3, the assertions follow. We suppose that m ≥ 4 and proceed in two steps.

1. To show that L(Cm−1
2 ) is maximal, we study, for a finite abelian group G, the set ∆1(G). We define

∆∗(G) = {min∆(G0) | G0 ⊂ G with ∆(G0) 6= ∅} ,

and recall that (see [19, Corollary 4.3.16])

∆∗(G) ⊂ ∆1(G) ⊂ {d1 ∈ ∆(G) | d1 divides some d ∈ ∆∗(G)} .

Thus max∆1(G) = max∆∗(G), and [26, Theorem 1.1] implies that max∆∗(G) = max{exp(G)−2, r(G)−
1}. Assume to the contrary that there is a finite abelian group G with D(G) = m ≥ 4 which is not an
elementary 2-group such that L(Cm−1

2 ) ⊂ L(G). Then

m− 2 = max∆∗(Cm−1
2 ) = max∆1(C

m−1
2 ) ≤ max∆1(G) = max∆∗(G) = max{exp(G) − 2, r(G)− 1} .

If r(G) ≥ m− 1, then D(G) = m implies that G ∼= Cm−1
2 , a contradiction. Thus exp(G) ≥ m, and since

D(G) = m we infer that that G ∼= Cm. If m = 4, then Proposition 3.3.4 shows that L(C3
2 ) 6⊂ L(C4),
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a contradiction. Suppose that m ≥ 5. Then ∆∗(Cm−1
2 ) = ∆1(C

m−1
2 ) = ∆(Cm−1

2 ) = [1,m − 2] by [19,
Corollary 6.8.3]. For cyclic groups we have max∆∗(Cm) = m−2 and max(∆∗(Cm)\{m−2}) = ⌊m/2⌋−1
by [19, Theorem 6.8.12]. Therefore L(Cm−1

2 ) ⊂ L(Cm) implies that

[1,m− 2] = ∆1(C
m−1
2 ) ⊂ ∆1(Cm) ,

a contradiction to m− 3 /∈ ∆1(Cm).

2. We recall some facts. Let G be a group with D(G) = m. If U ∈ A(G) with |U | = D(G), then
{2,D(G)} ⊂ L

(
U(−U)

)
. Cyclic groups and elementary 2-groups are the only groups G with the following

property: if L ∈ L(G) with {2,D(G)} ⊂ L, then L = {2,D(G)} ([19, Theorem 6.6.3]).
Now assume to the contrary that there is a finite abelian group G with D(G) = m such that L(G) ⊂

L(Cm). Let L ∈ L(G) with {2,D(G)} ⊂ L. Then L ∈ L(Cm) whence L = {2,D(G)} which implies that
G is cyclic or an elementary 2-group. By 1., G is not an elementary 2-group whence G is cyclic which
implies G ∼= Cm and hence L(G) = L(Cm).

The furthermore assertion on groups G with D(G) = m and L(G) ⊂ L(Cm−1
2 ) follows as above by

considering sets of lengths L with {2,D(G)} ⊂ L. �

In Section 4 we will see that L(Cm−1
2 ) need not be the largest element in Ωm, and that indeed

L(Cm) ⊂ L(Cm−1
2 ) for m ∈ [2, 5], where the inclusion is strict for m ≥ 4.

Theorem 3.6. We have ⋂
L(G) =

{
y + 2k + [0, k]

∣∣ y, k ∈ N0

}
,

where the intersection is taken over all finite abelian groups G with |G| ≥ 3.

Proof. By Proposition 3.3.2, the intersection on the left hand side is contained in the set on the right
hand side. Let G be a finite abelian group with |G| ≥ 3. If L ∈ L(G), then y + L ∈ L(G). Thus it
is sufficient to show that [2k, 3k] ∈ L(G) for every k ∈ N. If G contains two independent elements of
order 2 or an element of order 4, then the claim follows by Proposition 3.3. Thus, it remains to consider
the case when G contains an element g with ord(g) = p for some odd prime p ∈ N. Let k ∈ N and
Bk = ((2g)pgp)k. We assert that L(Bk) = [2k, 3k].

We set U1 = gp, U2 = (2g)p, V1 = (2g)(p−1)/2g, and V2 = (2g)gp−2. Since U1U2 = V 2
1 V2 and

Bk = (U1U2)
k = (U1U2)

k−ν(V 2
1 V2)

ν for all ν ∈ [0, k] ,

it follows that [2k, 3k] ⊂ L(Bk).
In order to show there are no other factorization lengths, we recall the concept of the g-norm of

sequences. If S = (n1g) · . . . (nℓg) ∈ B(〈g〉), where ℓ ∈ N0 and n1, . . . , nℓ ∈ [1, ord(g)], then

||S||g =
n1 + . . .+ nℓ

ord(g)
∈ N

is the g-norm of S. Clearly, if S = S1 · . . . ·Sm with S1, . . . , Sm ∈ A(G), then ||S||g = ||S1||g+ . . .+ ||Sm||g.
Note that U2 = (2g)p is the only atom in A({g, 2g}) with g-norm 2, and all other atoms in A({g, 2g})

have g-norm 1. Let Bk = U1 · . . . · Uℓ be a factorization of Bk, and let ℓ′ be the number of i ∈ [1, ℓ] such
that Ui = (2g)p. We have ‖Bk‖g = 3k and thus 3k = 2ℓ′ + (ℓ − ℓ′) = ℓ′ + ℓ. Since ℓ′ ∈ [0, k], it follows
that ℓ = 3k − ℓ′ ∈ [2k, 3k]. �

Theorem 3.7. Let L ⊂ N≥2 be a finite nonempty subset. Then there are only finitely many pairwise
non-isomorphic finite abelian groups G such that L /∈ L(G).

Proof. We start with the following two assertions.

A1. There is an integer nL ∈ N such that L ∈ L(Cn) for every n ≥ nL.
A2. For every p ∈ P there is an integer rp,L ∈ N such that L ∈ L(Cr

p) for every r ≥ rp,L.
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Proof of A1. By Proposition 3.2.3, there is some B =
∏k

i=1 mk

∏ℓ
j=1(−nj) ∈ B(Z) such that L(B) = L,

where k, ℓ,m1, . . . ,mk ∈ N and n1, . . . , nℓ ∈ N0. We set nL = n1 + . . .+ nℓ and choose some n ∈ N with
n ≥ nL. If S ∈ F(Z) with S |B and f : Z → Z/nZ denotes the canonical epimorphism, then S has sum
zero if and only if f(S) has sum zero. This implies that LB(Z/nZ)(f(B)) = LB(Z)(B) = L. �[Proof of
A1]

Proof of A2. Let p ∈ P be a prime and let Gp be an infinite dimensional Fp-vector space. By Proposition
3.2.3, there is some Bp ∈ B(Gp) such that L(Bp) = L. If rp,L is the rank of 〈supp(Bp)〉 ⊂ Gp, then

L = L(Bp) ∈ L(〈supp(Bp)〉) ⊂ L(Cr
p ) for every r ≥ rp,L . �[Proof ofA2]

Now let G be a finite abelian group such that L /∈ L(G). Then A1 implies that exp(G) < nL, and A2
implies that rp(G) < rp,L for all primes p with p | exp(G). Thus the assertion follows. �

4. Sets of lengths of transfer Krull monoids over small groups

Since the very beginning of factorization theory, invariants controlling the structure of sets of lengths
(such as elasticities and sets of distances) have been in the center of interest. Nevertheless, (apart from
a couple of trivial cases) the full system of sets of lengths has been written down explicitly only for the
following classes of monoids:

• Numerical monoids generated by arithmetical progressions: see [1].
• Self-idealizations of principal ideal domains: see [10, Corollary 4.16], [4, Remark 4.6].
• The ring of integer-valued polynomials over Z: see [14].
• The systems L(G) for infinite abelian groups G and for abelian groups G with D(G) ≤ 4: see
Propositions 3.2 and 3.3.

The goal of this section is to determine L(G) for abelian groups G having Davenport constant D(G) = 5.
By inequality (2.1) and the subsequent remarks, a finite abelian group G has Davenport constant five if
and only if it is isomorphic to one of the following groups:

C3 ⊕ C3, C5, C2 ⊕ C4, C4
2 .

Their systems of sets of lengths are given in Theorems 4.1, 4.3, 4.5, and 4.8. We start with a brief
analysis of these explicit descriptions (note that they will be needed again in Section 5; confer the proof
of Theorem 5.7).

By Theorem 3.5, we know that L(C4
2 ) is maximal in Ω5 = {L(C5),L(C2 ⊕ C4),L(C3 ⊕ C3),L(C4

2 )}.
Theorems 4.1, 4.3, 4.5, and 4.8 unveil that L(C3 ⊕ C3), L(C2 ⊕ C4), and L(C4

2 ) are maximal in Ω5,
and that L(C5) is contained in L(C4

2 ), but it is neither contained in L(C3 ⊕ C3) nor in L(C2 ⊕ C4).
Furthermore, Theorems 3.5, 4.3, and 4.8 show that L(Cm) ⊂ L(Cm−1

2 ) for m ∈ [2, 5]. It is well-known
that, for all m ≥ 4, L(Cm) 6= L(Cm−1

2 ) ([16, Corollary 5.3.3]), but it is an open problem whether the
inclusion L(Cm) ⊂ L(Cm−1

2 ) holds true for all m ∈ N≥2.

The group C3 ⊕ C3 has been handled in [22, Theorem 4.2].

Theorem 4.1. L(C2
3 ) = {y + [2k, 5k] | y, k ∈ N0} ∪ {y + [2k + 1, 5k + 2] | y ∈ N0, k ∈ N}}.

Remark. An equivalent way to describe L(C2
3 ) is {y+

⌈
2k
3

⌉
+[0, k] | y ∈ N0, k ∈ N≥2}∪{{y}, y+2+[0, 1] |

y ∈ N0}.
The fact that all sets of lengths are intervals is a consequence of the fact ∆(C2

3 ) = {1}. Of course,
each set of lengths L has to fulfill ρ(L) ≤ 5/2 = ρ(C2

3 ). We observe that the description shows that this
is the only condition, provided minL ≥ 2. The following lemma is frequently helpful in the remainder of
this section.

Lemma 4.2. Let G be a finite abelian group, and let A ∈ B(G).
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1. If supp(A) ∪ {0} is a group, then L(A) is an interval.

2. If A1 is an atom dividing A with |A1| = 2, then maxL(A) = 1 +maxL(AA−1
1 ).

3. If A is a product of atoms of length 2 and if every atom A1 dividing A has length |A1| = 2 or
|A1| = 4, then max L(A)− 1 /∈ L(A).

Proof. 1. See [19, Theorem 7.6.8].

2. Let ℓ = max L(A) and A = U1 · . . . ·Uℓ, where U1, . . . , Uℓ ∈ A(G). Let A1 = g1g2, where g1, g2 ∈ G.
If there exists i ∈ [1, ℓ] such that A1 = Ui, then maxL(A) = 1 + maxL(AA−1

1 ). Otherwise there exist
distinct i, j ∈ [1, ℓ] such that g1 |Ui and g2 |Uj . Thus A1 divides UiUj and hence 1 + max L(AA−1

1 ) ≥ ℓ

which implies that maxL(A) = 1 +max L(AA−1
1 ) by the maximality of ℓ.

3. If maxL(A)−1 ∈ L(A), then A = V1 ·. . .·Vmax L(A)−1 with |V1| = 4 and |V2| = . . . = |Vmax L(A)−1| = 2.
Thus V1 can only be a product two atoms of length 2, a contradiction. �

We now consider the groups C5, C2 ⊕C4, and C4
2 , each one in its own subsection. In the proofs of the

forthcoming theorems we will use Proposition 3.3 and Theorem 3.6 without further mention.

4.1. The system of sets of lengths of C5. The goal of this subsection is to prove the following result.

Theorem 4.3. L(C5) = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 ,

where L1 = {{y} | y ∈ N0} ,

L2 = {y + 2 + {0, 2} | y ∈ N0} ,

L3 = {y + 3 + {0, 1, 3} | y ∈ N0} ,

L4 = {y + 2k + 3 · [0, k] | y ∈ N0, k ∈ N} ,

L5 = {y + 2

⌈
k

3

⌉
+ [0, k] | y ∈ N0, k ∈ N \ {3}} ∪ {y + [3, 6] | y ∈ N0} ,

and L6 = {y + 2k + 3 + {0, 2, 3}+ 3 · [0, k] | y, k ∈ N0} .

We observe that all sets of lengths with many elements are arithmetic multiprogressions with difference
1 or 3. Yet, there are none with difference 2. This is because ∆∗(C5) = {1, 3}. Moreover, we point out
that the condition for an interval to be a set of lengths is different from that of the other groups with
Davenport constant 5. This is related to the fact that ρ2k+1(C5) = 5k + 1, while ρ2k+1(G) = 5k + 2 for
the other groups with Davenport constant 5. Before we start the actual proof, we collect some results on
sets of lengths over C5.

Lemma 4.4. Let G be cyclic of order five, and let A ∈ B(G).

1. If g ∈ G• and k ∈ N0, then

L
(
g5(k+1)(−g)5(k+1)(2g)g3

)
= 2k + 3 + {0, 2, 3}+ 3 · [0, k] .

2. If 2 ∈ ∆(L(A)) ⊂ [1, 2], then L(A) ∈ {{y, y + 2} | y ≥ 2} ∪ {{y, y + 1, y + 3} | y ≥ 3} or
L(A) = 3+{0, 2, 3}+L(A′) where A′ ∈ B(G) and L(A′) is an arithmetical progression of difference
3.

3. ∆(G) = [1, 3], and if 3 ∈ ∆(L(A)), then ∆(L(A)) = {3}.

4. ρ2k+1(G) = 5k + 1 for all k ∈ N.

Proof. 1. and 2. follow from the proof of [22, Lemma 4.5].
3. See [19, Theorems 6.7.1 and 6.4.7] and [11, Theorem 3.3].
4. See [16, Theorem 5.3.1]. �
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Proof of Theorem 4.3. Let G be cyclic of order five and let g ∈ G•. We first show that all the specified
sets occur as sets of lengths, and then we show that no other sets occur.

Step 1. We prove that for every L ∈ L2∪L3∪L4∪L5∪L6, there exists an A ∈ B(G) such that L = L(A).
We distinguish five cases.

If L = {y, y + 2} ∈ L2 with y ≥ 2, then we set A = 0y−2g5(−g)3(−2g) and obtain that L(A) =
y − 2 + {2, 4} = L.

If L = {y, y + 1, y + 3} ∈ L3 with y ≥ 3, then we set A = 0y−3g5(−g)5g2(−2g) and obtain that
L(A) = y − 3 + {3, 4, 6} = {y, y + 1, y + 3} = L.

If L = y+ 2k+ 3 · [0, k] ∈ L4 with k ∈ N and y ∈ N0, then we set A = g5k(−g)5k0y ∈ B(G) and hence
L(A) = y + [2k, 5k] = L.

If L = y+2k+3+{0, 2, 3}+3·[0, k] ∈ L6 with k ∈ N0 and y ∈ N0, then we set A = 0yg5(k+1)(−g)5(k+1)(2g)g3

and hence L(A) = y + 2k + 3 + {0, 2, 3}+ 3 · [0, k] = L by Lemma 4.4.1.
Now we suppose that L ∈ L5, and we distinguish two subcases. First, if L = y + [3, 6] with y ∈ N0,

then we set A = 0y(2g(−2g))g5(−g)5 and hence L(A) = y + [3, 6] = L. Second, we assume that
L = y + 2⌈k

3 ⌉+ [0, k] with y ∈ N0 and k ∈ N \ {3}.
If k ∈ N with k ≡ 0 (mod 3), then k ≥ 6 and by Lemma 4.2.1 we obtain that

L
(
0y(2g)5(−2g)5g5t(−g)5t

)
= y + [2t+ 2, 5t+ 5] = y + 2⌈

k

3
⌉+ [0, k] = L , where k = 3t+ 3 .

If k ∈ N with k ≡ 1 (mod 3), then by Lemma 4.2.1 we obtain that

L
(
0y(2g(−g)2)(g2(−2g))g5t(−g)5t

)
= y + [2t+ 2, 5t+ 3] = y + 2⌈

k

3
⌉+ [0, k] = L , where k = 3t+ 1 .

If k ∈ N with k ≡ 2 (mod 3), then by Lemma 4.2.1 we obtain that

L
(
0y(g3(2g))((−g)3(−2g))g5t(−g)5t

)
= y + [2t+ 2, 5t+ 4] = y + 2⌈

k

3
⌉+ [0, k] = L , where k = 3t+ 2 .

Step 2. We prove that for every A ∈ B(G•), L(A) ∈ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6.
Let A ∈ B(G•). We may suppose that ∆(L(A)) 6= ∅. By Lemma 4.4.3 we distinguish four cases

according to the form of the set of distances ∆(L(A)).

CASE 1: ∆(L(A)) = {1}.
Then L(A) is an interval and hence we assume that L(A) = [y, y + k] = y + [0, k] where y ≥ 2 and

k ≥ 1. If k = 3 and y = 2, then L(A) = [2, 5] and hence L(A) = L(g5(−g)5) = {2, 5}, a contradiction.
Thus k = 3 implies that y ≥ 3 and hence L(A) ∈ L5. If k ≤ 2, then we obviously have that L(A) ∈ L5.
Suppose that k ≥ 4. If y = 2t with t ≥ 2, then y + k ≤ 5t and hence y = 2t ≥ 2⌈k

3⌉ which implies that

L(A) ∈ L5. If y = 2t+ 1 with t ≥ 1, then y + k ≤ 5t+ 1 and hence y = 2t+ 1 ≥ 1 + 2⌈k
3 ⌉ which implies

that L(A) ∈ L5.

CASE 2: ∆(L(A)) = {3}.
Then L(A) = y+3 · [0, k] where y ≥ 2 and k ≥ 1. If y = 2t ≥ 2, then y+3k ≤ 5t and hence y = 2t ≥ 2k

which implies that L(A) ∈ L4. If y = 2t + 1 ≥ 3, then y + 3k ≤ 5t + 1 and hence y = 2t + 1 ≥ 1 + 2k
which implies that L(A) ∈ L4.

CASE 3: 2 ∈ ∆(L(A)) ⊂ [1, 2].
By Lemma 4.4.2, we infer that either L(A) ∈ L2 ∪ L3 or that L(A) = 3 + {0, 2, 3} + L(A′), where

A′ ∈ B(G) and L(A′) is an arithmetical progression of difference 3. In the latter case we obtain that
L(A′) = y+2k+3·[0, k], with y ∈ N0 and k ∈ N0, and hence L(A) = y+2k+3+{0, 2, 3}+3·[0, k] ∈ L6. �

4.2. The system of sets of lengths of C2 ⊕ C4. We establish the following result, giving a complete
description of the system of sets of lengths of C2 ⊕ C4.
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Theorem 4.5. L(C2 ⊕ C4) = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ,

where L1 = {{y} | y ∈ N0} ,

L2 = {y + 2

⌈
k

3

⌉
+ [0, k] | y ∈ N0, k ∈ N \ {3}} ∪ {y + [3, 6] | y ∈ N0, } ∪ {[2t+ 1, 5t+ 2] | t ∈ N}

= {y +

⌈
2k

3

⌉
+ [0, k] | y ∈ N0, k ∈ N \ {1, 3}} ∪ {y + 3 + [0, 3], y + 2 + [0, 1] | y ∈ N0} ,

L3 = {y + 2k + 2 · [0, k] | y ∈ N0, k ∈ N} ,

L4 = {y + k + 1 + ({0} ∪ [2, k + 2]) | y ∈ N0, k ∈ N odd} ,

and L5 = {y + k + 2 + ([0, k] ∪ {k + 2}) | y ∈ N0, k ∈ N} .

We note that all sets of lengths are arithmetical progressions with difference 2 or almost arithmetical
progressions with difference 1 and bound 2. This is related to the fact that ∆(C2⊕C4) = ∆∗(C2⊕C4) =
{1, 2}. We start with a lemma determining all minimal zero-sum sequences over C2 ⊕ C4.

Lemma 4.6. Let (e, g) be a basis of G = C2 ⊕ C4 with ord(e) = 2 and ord(g) = 4. Then the minimal
zero-sum sequences over G• are given by the following list.

1. The minimal zero sum sequences of length 2 are :

S1
2 = {e2, (e+ 2g)2},

S2
2 = {(2g)2},

S3
2 = {g(−g), (e+ g)(e− g)}

2. The minimal zero sum sequences of length 3 are :

S1
3 = {e(2g)(e+ 2g)} ,

S2
3 = {g2(2g), (−g)2(2g), (e+ g)2(2g), (e− g)2(2g)} ,

S3
3 = {eg(e− g), e(−g)(e+ g), (e+ 2g)g(e+ g), (e+ 2g)(−g)(e− g)} .

3. The minimal zero sum sequences of length 4 are :

S1
4 = {g4, (−g)4, (e + g)4, (e− g)4} ,

S2
4 = {g2(e + g)2, (−g)2(e− g)2, g2(e− g)2, (−g)2(e + g)2} ,

S3
4 = {eg2(e+ 2g), e(e+ g)2(e+ 2g), e(−g)2(e + 2g), e(e− g)2(e+ 2g)} ,

S4
4 = {eg(2g)(e+ g), e(−g)(2g)(e− g), (e+ 2g)g(2g)(e− g), (e+ 2g)(−g)(2g)(e+ g)} .

4. The minimal zero sum sequences of length 5 are :

S5 = {eg3(e + g), e(−g)3(e − g), e(e+ g)3g, e(e− g)3(−g)

(e+ 2g)g3(e − g), (e+ 2g)(−g)3(e + g), (e+ 2g)(e+ g)3(−g), (e+ 2g)(e− g)3g} ,

Moreover, for each two atoms W1,W2 in any one of the above sets, there exists a group isomorphism
φ : G → G such that φ(W1) = W2.

Proof. We give a sketch of the proof.
Since a minimal zero-sum sequence of length two is of the form h(−h) for some non-zero element

h ∈ G, the list given in 1. follows.
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A minimal zero-sum sequence of length three contains either two elements of order four or no element of
order four. If there are two elements of order four, we can have one element of order four with multiplicity
two (see S2

3) or two distinct elements of order four that are not the inverse of each other (see S3
3). If there

is no element of order four, the sequence consists of three distinct elements of order two (see S1
3).

A minimal zero-sum sequence of length four contains either four elements of order four or two elements
of order four. If there are two elements of order four, the sequence can contain one element with multi-
plicity two (see S3

4) or any two distinct elements that are not each other’s inverse with multiplicity one
(see S4

4). If there are four elements of order four, the sequence can contain one element with multiplicity
four (see S1

4) or two elements with multiplicity two (see S2
4).

Since every minimal zero-sum sequence of length five contains an element with multiplicity three, the
list given in 4. follows (for details see [19, Theorem 6.6.5]).

The existence of the required isomorphism follows immediately from the given description of the
sequences. �

The next lemma collects some basic results on L(C2 ⊕ C4) that will be essential for the proof of
Theorem 4.5.

Lemma 4.7. Let G = C2 ⊕ C4, and let A ∈ B(G).

1. ∆(G) = [1, 2], and if {2, 5} ⊂ L(A), then L(A) = {2, 4, 5}.

2. ρ2k+1(G) = 5k + 2 for all k ∈ N.

3. If (e, g) is a basis of G with ord(e) = 2 and ord(g) = 4, then {0, g, 2g, e+g, e+2g} and {0, g, 2g, e, e−
g} are half-factorial sets. Furthermore, if supp(A) ⊂ {e, g, 2g, e+ g, e + 2g} and ve(A) = 1, then
|L(A)| = 1.

Proof. 1. The first assertion follows from [19, Theorem 6.7.1 and Corollary 6.4.8]. Let A ∈ B(G) with
{2, 5} ⊂ L(A). Then there is an U ∈ A(G) of length |U | = 5 such that A = (−U)U . By Lemma 4.6
there is a basis (e, g) of G with ord(e) = 2 and ord(g) = 4 such that U = eg3(e + g). This implies that
L(A) = {2, 4, 5}.

2. See [18, Corollary 5.2].

3. See [19, Theorem 6.7.9.1] for the first statement. Suppose that supp(A) ⊂ {e, g, 2g, e+g, e+2g} and
ve(A) = 1. Then for every atom W dividing A with e |W , we have that k(W ) = 3

2 . Since supp(AW−1)

is half-factorial, we obtain that L(AW−1) = {k(A) − 3/2} by [19, Proposition 6.7.3] which implies that
L(A) = {1 + k(A)− 3/2} = {k(A)− 1/2}. �

Proof of Theorem 4.5. Let (e, g) be a basis of G = C2 ⊕ C4 with ord(e) = 2 and ord(g) = 4. We start
by collecting some basic constructions that will be useful. Then, we show that all the sets in the result
actually are sets of lengths. Finally, we show there are no other sets of lengths.

Step 0. Some elementary constructions.
Let U1 = eg3(e + g), U2 = (e + 2g)(e + g)3(−g), U3 = e(e − g)3(−g), U4 = (−g)2(e + g)2, and

U5 = e(e+ 2g)g2. Then it is not hard to check that

L(U1(−U1)) = L(U2(−U2)) = {2, 4, 5},

L(U1U3)) = [2, 4], L(U1(−U4)) = [2, 3] ,

L(U1U3U4) = [3, 7], L(U1(−U1)U2(−U2)) = [4, 10] ,

L(U2
5 (−g)4) = {3, 4, 6}, L(U5(−U5)g

4(−g)4) = {4, 5, 6, 8} , and

L(U1(−U1)(e + 2g)2) = [3, 6] .(4.1)

Based on these results, we can obtain the sets of lengths of more complex zero-sum sequences. Let k ∈ N.
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Since [2k+2, 4k+5] ⊃ L(U1(−U1)g
4k(−g)4k) ⊃ L(U1(−U1))+L(g4k(−g)4k) = 2k+2+({0}∪[2, 2k+3])

and 2k + 3 /∈ L(U1(−U1)g
4k(−g)4k), we obtain that

(4.2) L(U1(−U1)g
4k(−g)4k) = 2k + 2 + ({0} ∪ [2, 2k + 3]) .

Since [2(k+1), 5(k+1)] ⊃ L(U1(−U1)U
k
2 (−U2)

k) ⊃ L(U1(−U1)U2(−U2))+L(Uk−1
2 (−U2)

k−1) = [2(k+
1), 5(k + 1)], we obtain that

(4.3) L(U1(−U1)U
k
2 (−U2)

k) = [2(k + 1), 5(k + 1)] .

Since [2(k+1), 5(k+1)− 1] ⊃ L(U1U3U
k
2 (−U2)

k) ⊃ L(U1U3)+ L(Uk
2 (−U2)

k) = [2(k+1), 5(k+1)− 1],
we obtain that

(4.4) L(U1U3U
k
2 (−U2)

k) = [2(k + 1), 5(k + 1)− 1] .

Since [2(k+1), 5(k+1)− 2] ⊃ L(U1(−U4)U
k
2 (−U2)

k) ⊃ L(U1(−U4)) + L(Uk
2 (−U2)

k) = [2(k+1), 5(k+
1)− 2], we obtain that

(4.5) L(U1(−U4)U
k
2 (−U2)

k) = [2(k + 1), 5(k + 1)− 2] .

Since [2k+1, 5k+2] ⊃ L(U1U3U4U
k−1
2 (−U2)

k−1) ⊃ L(U1U3U4)+ L(Uk−1
2 (−U2)

k−1) = [2k+1, 5k+2],
we obtain that

(4.6) L(U1U3U4U
k−1
2 (−U2)

k−1) = [2k + 1, 5k + 2] .

Since

[2k+ 1, 4k+ 2] ⊃ L(U2
5 (−g)4g4k−4(−g)4k−4) ⊃ L(U2

5 (−g)4) + L(g4k−4(−g)4k−4) = [2k+ 1, 4k]∪ {4k+ 2}

and 4k + 1 /∈ L(U2
5 (−g)4g4k−4(−g)4k−4) by Lemma 4.2.3, we obtain that

(4.7) L(U2
5 (−g)4g4k−4(−g)4k−4) = [2k + 1, 4k] ∪ {4k + 2} .

Suppose that k ≥ 2. Since

[2k, 4k] ⊃ L(U5(−U5)g
4k−4(−g)4k−4) ⊃ L(U5(−U5)g

4(−g)4) + L(g4k−8(−g)4k−8) = [2k, 4k − 2] ∪ {4k}

and 4k − 1 /∈ L(U5(−U5)g
4k−4(−g)4k−4) by Lemma 4.2.3, we obtain that

(4.8) L(U5(−U5)g
4k−4(−g)4k−4) = [2k, 4k − 2] ∪ {4k} .

Step 1. We prove that for every L ∈ L2 ∪ L3 ∪ L4 ∪ L5 there exists an A ∈ B(G) such that L = L(A).
We distinguish four cases.

First we suppose that L ∈ L2, and we distinguish several subcases. If L = y+ [3, 6] with y ∈ N0, then
we set A = 0yU1(−U1)(e+2g)2 and hence L(A) = y+[3, 6] = L by Equation (4.1). If L = [2k+1, 5k+2]

with k ∈ N, then we set A = U1U3U4U
k−1
2 (−U2)

k−1 and hence L(A) = L by Equation (4.6). Now we
assume that L = y + 2⌈k

3 ⌉+ [0, k] with y ∈ N0 and k ∈ N \ {3}.
If k ≡ 0 (mod 3), then k ≥ 6 and by Equation (4.3) we infer that

L
(
0yU1(−U1)U

t
2(−U2)

t
)
= y + [2t+ 2, 5t+ 5] = y + 2⌈

k

3
⌉+ [0, k] = L , where k = 3t+ 3 .

If k ≡ 1 (mod 3), then by Equation (4.5) we infer that

L
(
0yU1(−U4)U

t
2(−U2)

t
)
= y + [2t+ 2, 5t+ 3] = y + 2⌈

k

3
⌉+ [0, k] = L , where k = 3t+ 1 .

If k ≡ 2 (mod 3), then by Equation (4.4) we infer that

L
(
0yU1U3U

t
2(−U2)

t
)
= y + [2t+ 2, 5t+ 4] = y + 2⌈

k

3
⌉+ [0, k] = L , where k = 3t+ 2 .

If L = y+2k+2 · [0, k] ∈ L3 with y ∈ N0 and k ∈ N, then we set A = 0yg4k(−g)4k and hence L(A) = L.

If L = y + 2t+ 2 + ({0} ∪ [2, 2t+ 3]) ∈ L4 with y, t ∈ N0, then we set A = 0yU1(−U1)g
4t(−g)4t and

obtain that L(A) = y + 2t+ 2 + ({0} ∪ [2, 2t+ 3]) = L by Equation (4.2).
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Finally we suppose that L = y + k + ([0, k − 2] ∪ {k}) ∈ L5 with k ≥ 3 and y ∈ N0, and we
distinguish two subcases. If k = 2t with t ≥ 2, then we set A = 0yU5(−U5)g

4t−4(−g)4t−4 and hence
L(A) = y + k + ([0, k − 2] ∪ {k}) = L by Equation (4.8). If k = 2t + 1 with t ≥ 1, then we set
A = 0yU2

5 (−g)4g4t−4(−g)4t−4 and hence L(A) = y + k + ([0, k − 2] ∪ {k}) = L by Equation (4.7).

Step 2. We prove that for every A ∈ B(G•), L(A) ∈ L2 ∪ L3 ∪ L4 ∪ L5.
Let A ∈ B(G•). We may suppose that ∆(L(A)) 6= ∅. By Lemma 4.7.1 we have to distinguish two

cases.

CASE 1: ∆(L(A)) = {1}.
Then L(A) is an interval, say L(A) = [y, y + k] = y + [0, k] with y ≥ 2 and k ≥ 1. If k = 3 and

y = 2, then L(A) = [2, 5], a contradiction to Lemma 4.7.1. Thus k = 3 implies that y ≥ 3 and hence
L(A) ∈ L2. If k ≤ 2, then obviously L(A) ∈ L2. Suppose that k ≥ 4. If y = 2t with t ≥ 2, then
y + k ≤ 5t and hence y = 2t ≥ 2⌈k

3 ⌉ which implies that L(A) ∈ L2. Suppose that y = 2t+ 1 with t ∈ N.

If y + k ≤ 5t + 1, then y = 2t+ 1 ≥ 1 + 2⌈k
3 ⌉ which implies that L(A) ∈ L2. Otherwise y + k = 5t + 2

and hence L(A) = [2t+ 1, 5t+ 2] ∈ L2.

CASE 2: 2 ∈ ∆(L(A)) ⊂ [1, 2].
We freely use the classification of minimal zero-sum sequence given in Lemma 4.6. Since 2 ∈ ∆(L(A)),

there are k ∈ N and U1, . . . , Uk, V1, . . . , Vk+2 ∈ A(G) with |U1| ≥ |U2| ≥ . . . ≥ |Uk| such that

A = U1 · . . . · Uk = V1 · . . . · Vk+2 and k + 1 6∈ L(A) ,

and we may suppose that k is minimal with this property. Then [min L(A), k] ∈ L(A) and there exists
k0 ∈ [2, k] such that |Ui| ≥ 3 for every i ∈ [1, k0] and |Ui| = 2 for every i ∈ [k0 + 1, k]. We continue with
two simple assertions.

A1. For each two distinct i, j ∈ [1, k0], we have that 3 6∈ L(UiUj).
A2. |L(U1 · . . . · Uk0

)| ≥ 2.

Proof of A1. Assume to the contrary that there exist distinct i, j ∈ [1, k0] such that 3 ∈ L(UiUj). This
implies that k + 1 ∈ L(A), a contradiction. �[Proof of A1]

Proof of A2. Assume to the contrary that |L(U1 · . . . · Uk0
)| = 1. Then Lemma 4.2.2 implies that

max L(A) = max L(U1 · . . . · Uk0
) + k − k0 = k, a contradiction. �[Proof of A2]

We use A1 and A2 without further mention and freely use Lemma 4.6 together with all its notation.
We distinguish six subcases.

CASE 2.1: U1 ∈ S5.
Without loss of generality, we may assume that U1 = eg3(e + g). We choose j ∈ [2, k0] and start

with some preliminary observations. If |Uj| = 5, then the fact that 3 6∈ L(U1Uj) implies that Uj = −U1.
If |Uj | = 4, then 3 6∈ L(U1Uj) implies that Uj ∈ {g2(e + g)2, g4, (−g)4, (e + g)4}. If |Uj | = 3, then
3 6∈ L(U1Uj) implies that Uj ∈ {(e+ 2g)g(e+ g), g2(2g), (e+ g)2(2g)}.

Now we distinguish three cases.
Suppose that |U2| = 5. Then U2 = −U1 and by symmetry we obtain that Uj ∈ {g4, (−g)4} for every

j ∈ [3, k0]. Let i ∈ [k0 + 1, k]. If Ui 6= e2, then 4 ∈ U1U2Ui and hence k + 1 ∈ L(A), a contradiction.
Therefore we obtain that

A = U1(−U1)(g
4)k1((−g)4)k2(e2)k3 where k1, k2, k3 ∈ N0 ,

and without loss of generality we may assume that k1 ≥ k2. Then it follows that

L(A) = k1 − k2 + k3 + L(U1(−U1)(g
4)k2((−g)4)k2) = k3 + k1 − k2 + 2k2 + 2 + ({0} ∪ [2, 2k2 + 3]) ∈ L4 .

Suppose that |U2| = 4 and there exists j ∈ [2, k0] such that Uj = (−g)4, say j = 2. Let i ∈ [3, k0].
If Ui ∈ {g2(e + g)2, g2(2g)}, then 3 ∈ L(U2Ui) and hence k + 1 ∈ L(A), a contradiction. If Ui ∈
{(e + g)4, (e + g)2(2g), (e + 2g)g(e + g)}, then 4 ∈ L(U1U2Ui) and hence k + 1 ∈ L(A), a contradiction.
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Therefore Ui ∈ {g4, (−g)4}. Let τ ∈ [k0+1, k]. If Uτ ∈ {(e+2g)2, (2g)2, (e+g)(e−g)}, then 4 ∈ L(U1U2Uτ )
and hence k + 1 ∈ L(A), a contradiction. Therefore Uτ ∈ {e2, g(−g)}. Therefore we obtain that

A = U1(g
4)k1((−g)4)k2(g(−g))k3(e2)k4 where k1, k2, k3, k4 ∈ N0

and hence

L(A) = L((g4)k1+1((−g)4)k2(g(−g))k3(e2)k4) = k4 + L(g4k1+4+k3(−g)4k2+k3) ∈ L3 .

Suppose that |U2| ≤ 4 and for every j ∈ [2, k0], we have Uj 6= (−g)4. Then Uj ∈ {g2(e + g)2, g4, (e +
g)4, (e+ 2g)g(e+ g), g2(2g), (e+ g)2(2g)}. Since supp(U1 · . . . · Uk0

) ⊂ {e, g, 2g, e+ g, e+ 2g} and ve(U1 ·
. . . · Uk0

) = 1, Lemma 4.7.3 implies that |L(U1 · . . . · Uk0
)| = 1, a contradiction.

CASE 2.2: U1 ∈ S4
4 .

Without loss of generality, we may assume that U1 = eg(2g)(e+ g). Let j ∈ [2, k0].
Suppose that |Uj | = 4. Since 3 6∈ L(U1Uj), we obtain that Uj ∈ {g2(e + g)2, g4, (e + g)4}. Thus

U1Uj = W1W2 with |W1| = 5, where W1,W2 are atoms and hence we are back to CASE 2.1.
Suppose that |Uj | = 3. Since 3 6∈ L(U1Uj), we obtain that Uj ∈ {(e+2g)g(e+ g), g2(2g), (e+ g)2(2g)}.

If Uj ∈ {g2(2g), (e+ g)2(2g)}, then U1Uj = W1W2 with |W1| = 5, where W1,W2 are atoms and hence we
are back to CASE 2.1. Thus it remains to consider the case where Uj = (e+ 2g)g(e+ g).

Therefore we have

U1 · . . . · Uk0
= U1

(
(e+ 2g)g(e+ g)

)k1

where k1 ∈ N0 .

Since supp(U1 · . . . · Uk0
) ⊂ {e, g, 2g, e+ g, e + 2g} and ve(U1 · . . . · Uk0

) = 1, Lemma 4.7.3 implies that
|L(U1 · . . . · Uk0

)| = 1, a contradiction.

CASE 2.3: U1 ∈ S3
4 and for every i ∈ [2, k0], we have Ui 6∈ S4

4 .
Without loss of generality, we may assume that U1 = eg2(e+ 2g). Let j ∈ [2, k0].
Suppose that |Uj | = 4. Since 3 6∈ L(U1Uj), we obtain that Uj ∈ {−U1, g

2(e + g)2, g2(e − g)2, (e +
g)4, (e − g)4, g4}. If Uj ∈ {g2(e + g)2, g2(e − g)2, (e + g)4, (e − g)4}, then U1Uj = W1W2 with |W1| = 5,
where W1,W2 are atoms and hence we are back to CASE 2.1. Thus it remains to consider the cases
where Uj = −U1 or Uj = g4.

Suppose that |Uj | = 3. Since 3 6∈ L(U1Uj), we obtain that Uj ∈ {eg(e−g), (e+2g)g(e+g), g2(2g), (e+
g)2(2g), (e − g)2(2g)}. If Uj ∈ {eg(e − g), (e + 2g)g(e + g)}, then U1Uj = W1W2 with |W1| = 5, where
W1,W2 are atoms and hence we are back to CASE 2.1. If Uj ∈ {(e + g)2(2g), (e − g)2(2g)}, then
U1Uj = W1W2 with W1 ∈ S4

4 , where W1,W2 are atoms and hence we are back to CASE 2.2. Thus it
remains to consider the case where Uj = g2(2g).

If Ui 6= −U1 for every i ∈ [2, k0], then U1 · . . . · Uk0
= U1(g

4)k1(g2(2g))k2 where k1, k2 ∈ N0. Since
supp(U1 · . . . · Uk0

) ⊂ {e, g, 2g, e+ g, e + 2g} and ve(U1 · . . . · Uk0
) = 1, Lemma 4.7.3 implies that |L(U1 ·

. . . · Uk0
)| = 1, a contradiction. Thus there exists some i ∈ [2, k0], say i = 2, such that U2 = −U1. By

symmetry we obtain that k0 = 2. Let τ ∈ [3, k]. If Uτ ∈ {(2g)2, (e + g)(e − g)}, then 4 ∈ L(U1U2Uτ )
and hence k + 1 ∈ L(A), a contradiction. Therefore A = U1(−U1)(e

2)k1 ((e + 2g)2)k2(g(−g))k3 where
k1, k2, k3 ∈ N0. Since [min L(A), 2+k1+k2+k3] ⊂ L(A), we obtain that L(A) = [min L(A), 2+y]∪{4+y}
where y = k1 + k2 + k3 ∈ N0. For every atom V dividing A, we have that |V | = 2 or |V | = 4. Thus
min L(A) ≥ 2 + y

2 which implies that L(A) ∈ L5.

CASE 2.4: U1 ∈ S2
4 and for every i ∈ [2, k0], we have Ui 6∈ S4

4 ∪ S3
4 .

Without loss of generality, we may assume that U1 = g2(e + g)2. Let j ∈ [2, k0].
Suppose that |Uj | = 4. If Uj ∈ {g2(e − g)2, (−g)2(e + g)2, (−g)4, (e − g)4}, then 3 ∈ L(U1Uj), a

contradiction. Thus Uj ∈ {U1,−U1, g
4, (e+ g)4}.

Suppose that |Uj | = 3. If Uj ∈ {(e + 2g)(−g)(e − g), (−g)2(2g), (e − g)2(2g)}, then 3 ∈ L(U1Uj), a
contradiction. If Uj ∈ {eg(e − g), e(−g)(e + g)}, then U1Uj = W1W2 with |W1| = 5, where W1,W2 are
atoms and hence we are back to CASE 2.1. If Uj = e(2g)(e+2g), then U1Uj = e(e+g)g(e+2g)g(e+g)(2g)
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and e(e+g)g(e+2g) ∈ S4
4 , going back to CASE 2.2. Thus it remains to consider the case where Uj = g2(2g)

or Uj = (e + g)2(2g).
If Ui 6= −U1 for every i ∈ [2, k0], then supp(U1 · . . . · Uk0

) ⊂ {g, 2g, e + g, e + 2g} is half-factorial by
Lemma 4.7.3, a contradiction. Thus there exists some i ∈ [2, k0], say i = 2, such that U2 = −U1. By
symmetry we obtain that {U1, . . . , Uk0

} = {U1,−U1}. Let τ ∈ [k0 + 1, k]. If Uτ ∈ {e2, (2g)2, (e + 2g)2},

then 4 ∈ L(U1U2Uτ ) and k + 1 ∈ L(U1U2Uτ ), a contradiction. Therefore A = Uk1

1 (−U1)
k2(g(−g))k3((e+

g)(e− g))k4 where k1, k2 ∈ N and k3, k4 ∈ N0. If k1 + k2 ≥ 3, by symmetry we assume that k1 ≥ 2, then
U2
1 (−U1) = g4(−g)2(e + g)2(e + g)(e − g)(e + g)(e − g) and hence 4 ∈ L(U2

1 (−U1)) which implies that
k+1 ∈ L(A), a contradiction. Thus k1 = k2 = 1 and hence A = U1(−U1)(g(−g))k3((e+g)(e−g))k4 where
k3, k4 ∈ N0. Since [min L(A), 2+ k3 + k4] ∈ L(A), we obtain that L(A) = [min L(A), 2+ y]∪{4+ y} where
y = k3+k4 ∈ N0. For every atom V dividing A, we have that |V | = 2 or |V | = 4. Thus min L(A) ≥ 2+ y

2
which implies that L(A) ∈ L5.

CASE 2.5: U1 ∈ S1
4 and for every i ∈ [2, k0], we have Ui 6∈ S4

4 ∪ S3
4 ∪ S2

4 .
Without loss of generality, we may assume that U1 = g4. Let j ∈ [2, k0].
Suppose that |Uj | = 4. If Uj ∈ {(e+ g)4, (e− g)4}, then U1Uj = W1W2 with W1 ∈ S2

4 , where W1,W2

are atoms and hence we are back to CASE 2.4. Thus it remains to consider the case where Uj = U1 or
Uj = −U1.

Suppose that |Uj | = 3. If Uj ∈ {(−g)2(2g)}, then 3 ∈ L(U1Uj), a contradiction. If Uj ∈ {e(−g)(e +
g), (e + 2g)(−g)(e− g)}, then U1Uj = W1W2 with |W1| = 5, where W1,W2 are atoms and hence we are
back to CASE 2.1. If Uj ∈ {(e+ g)2(2g), (e− g)2(2g)}, then U1Uj = W1W2 with W1 ∈ S2

4 , where W1,W2

are atoms and hence we are back to CASE 2.4. If Uj = e(2g)(e+2g), then U1Uj = W1W2 with W1 ∈ S3
4 ,

where W1,W2 are atoms and hence we are back to CASE 2.3. Thus it remains to consider the case where
Uj = g2(2g), or Uj = eg(e− g), or Uj = (e + 2g)g(e+ g).

First, suppose that Ui 6= −U1 for every i ∈ [2, k0]. Then

U1 · . . . · Uk0
= Uk1

1 (eg(e− g))k2((e + 2g)g(e+ g))k3(g2(2g))k4 where k1 ∈ N and k2, k3, k4 ∈ N0 .

If k2 ≥ 1 and k3 ≥ 1, then eg(e − g)(e + 2g)g(e + g) = eg2(e + 2g)(e + g)(e − g), eg2(e + 2g) ∈ S3
4 and

hence we are back to CASE 2.3. Thus we may assume that k2 = 0 or k3 = 0. Since {g, 2g, e+ g, e+ 2g}
and {g, 2g, e, e − g} are both half-factorial by Lemma 4.7.3, we obtain that |L(U1 · . . . · Uk0

)| = 1, a
contradiction.

Second, suppose that there exists some i ∈ [2, k0], say i = 2, such that U2 = −U1. By symmetry we
obtain that {U1, . . . , Uk0

} = {U1,−U1}. Since 4 ∈ L(U1 · U2 · (2g)2), 5 ∈ L(U1U2e
2(e − g)(e + g)), and

5 ∈ L(U1U2(e + 2g)2(e− g)(e+ g)), we obtain that

{Uk0+1, . . . , Uk} ⊂ {(e+ g)(e− g), g(−g)} or {Uk0+1, . . . , Uk} ⊂ {e2, (e+ 2g)2, g(−g)} .

This implies that

A = (g4)k1 ((−g)4)k2((e+ g)(e− g))k3(g(−g))k4 or A = (g4)k1 ((−g)4)k2(e2)k3((e + 2g)2)k4(g(−g))k5 ,

where k1, k2 ∈ N and k3, k4, k5 ∈ N0.
Suppose that A = (g4)k1((−g)4)k2((e+ g)(e− g))k3(g(−g))k4 , where k1, k2 ∈ N and k3, k4, k5 ∈ N0. If

k1 ≥ 2 and k3 ≥ 2, then g4 g4(−g)4(e+ g)(e− g)(e+ g)(e− g) =
(
g(−g)

)4
g2(e+ g)2g2(e− g)2 and hence

6 ∈ L(g4g4(−g)4(e+ g)(e− g)(e+ g)(e− g)). Thus k+1 ∈ L(A), a contradiction. Therefore by symmetry
k3 = 1 or k1 = k2 = 1. If k3 = 1, then L(A) = 1 + L((g4)k1((−g)4)k2(g(−g))k4) ∈ L3. If k1 = k2 = 1,
then L(A) = [min L(A), 2 + y] ∪ {4 + y} where y = k3 + k4 ∈ N0. For every atom V dividing A, we have
that |V | = 2 or |V | = 4. Thus min L(A) ≥ 2 + y

2 which implies that L(A) ∈ L5.

Suppose that A = (g4)k1((−g)4)k2(e2)k3((e + 2g)2)k4(g(−g))k5 , where k1, k2 ∈ N and k3, k4, k5 ∈ N0.

If k1 ≥ 2, k3 ≥ 1, and k4 ≥ 1, then g4g4(−g)4e2(e + 2g)2 =
(
g(−g)

)4(
e(e + 2g)g2

)2
and hence 6 ∈

L(g4g4(−g)4e2(e+ 2g)2). Thus k + 1 ∈ L(A), a contradiction. Therefore by symmetry k3 = 0, or k4 = 0,
or k1 = k2 = 1. If k3 = 0 or k4 = 0, then L(A) = k3 + k4 + L((g4)k1((−g)4)k2(g(−g))k5) ∈ L3. If
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k1 = k2 = 1, then L(A) = [min L(A), 2 + y] ∪ {4 + y} where y = k3 + k4 + k5 ∈ N0. For every atom V
dividing A, we have that |V | = 2 or 4. Thus min L(A) ≥ 2 + y

2 which implies that L(A) ∈ L5.

CASE 2.6: |U1| = 3.
Let j ∈ [2, k0]. We distinguish three subcases.
First, we suppose that U1 ∈ S3

3 , and without restriction we may assume that U1 = eg(e − g). If
Uj = −U1, then 3 ∈ L(U1Uj), a contradiction. If Uj ∈ {(−g)2(2g), (e + g)2(2g), e(2g)(e + 2g)}, then
U1Uj = W1W2 with W1 ∈ S4

4 where W1,W2 are atoms and hence we are back to CASE 2.2. If Uj ∈
{(e + 2g)g(e + g), (e + 2g)(−g)(e − g)}, then U1Uj = W1W2 with W1 ∈ S3

4 where W1,W2 are atoms
and hence we are back to CASE 2.3. If Uj = U1, then U1Uj = W1W2 with W1 ∈ S2

4 where W1,W2 are
atoms and hence we are back to CASE 2.4. Thus it remains to consider the case where Uj = g2(2g) or
(e − g)2(2g). Then U1 · . . . · Uk0

= U1(g
2(2g))k1((e − g)2(2g))k2 where k1, k2 ∈ N0. Since {e, g, 2g, e− g}

is half-factorial by Lemma 4.7.3, we obtain that |L(U1 · . . . · Uk0
)| = 1, a contradiction.

Second, we suppose that U1 ∈ S2
3 , and without restriction we may assume that U1 = g2(2g) and

Uj 6∈ S3
3 . If Uj = −U1, then 3 ∈ L(U1Uj). If Uj = U1, then U1Uj = W1W2 with W1 ∈ S1

4 where W1,W2

are atoms and hence we are back to CASE 2.5. If Uj ∈ {(e+ g)2(2g), (e− g)2(2g)}, then U1Uj = W1W2

with W1 ∈ S2
4 where W1,W2 are atoms and hence we are back to CASE 2.4. If Uj = e(2g)(e+ 2g), then

U1Uj = W1W2 with W1 ∈ S3
4 where W1,W2 are atoms and hence we are back to CASE 2.3.

Third, we suppose that U1 ∈ S1
3 , and without restriction we assume that Uj ∈ S1

3 . Thus 3 ∈ L(U1Uj),
a contradiction. �

4.3. The system of sets of lengths of C4
2 . Now we give a complete description of the system of sets

of lengths of C4
2 .

Theorem 4.8. L(C4
2 ) = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 ∪ L7 ∪ L8,

where L1 =
{
{y} | y ∈ N0

}
,

L2 =
{
y + 2k + 3 · [0, k] | y, k ∈ N0

}
,

L3 =
{
y + [2, 3], y + [2, 4], y + [3, 6], y + [3, 7], y + [4, 9] | y ∈ N0

}
∪

{
y + [m,m+ k] | y ∈ N0, k ≥ 6,m minimal with m+ k ≤ 5m/2

}

=
{
y +

⌈
2k

3

⌉
+ [0, k] | y ∈ N0, k ∈ N \ {1, 3}

}
∪ {y + 3 + [0, 3], y + 2 + [0, 1] | y ∈ N0},

L4 =
{
y + 2k + 2 · [0, k]

∣∣ y, k ∈ N0

}
,

L5 = {y + k + 2 + ([0, k] ∪ {k + 2}) | y ∈ N0, k ∈ N},

L6 = {y + 2

⌈
k

3

⌉
+ 2 + ({0} ∪ [2, k + 2]) | y ∈ N0, k ≥ 5 or k = 3},

L7 = {y + 2k + 3 + {0, 1, 3}+ 3 · [0, k] | y, k ∈ N0} ∪

{y + 2k + 4 + {0, 1, 3}+ 3 · [0, k] ∪ {y + 5k + 8} | y, k ∈ N0},

and L8 = {y + 2k + 3 + {0, 2, 3}+ 3 · [0, k] | y, k ∈ N0} ∪

{y + 2k + 4 + {0, 2, 3}+ 3 · [0, k] ∪ {y + 5k + 9} | y, k ∈ N0}.

We note that the system of sets of lengths of C4
2 is richer than that of the other groups we considered.

A reason for this is that the set ∆∗(C4
2 ) is largest, namely {1, 2, 3} (this fact was also crucial in the proof

of Theorem 3.5). We recall some useful facts in the lemma below.

Lemma 4.9. Let G = C4
2 , and let A ∈ B(G).
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1. ∆(G) = [1, 3], and if 3 ∈ ∆(L(A)), then ∆(L(A)) = {3} and there is a basis (e1, . . . , e4) of G such
that supp(A) \ {0} = {e1, . . . , e4, e1 + . . .+ e4}.

2. ρ2k+1(G) = 5k + 2 for all k ∈ N.

Proof. 1. The first statement follows from [19, Theorem 6.8.3], and the second statement from [23,
Lemma 3.10].

2. See [19, Theorem 6.3.4]. �

In the following result we characterize which intervals are sets of lengths for C4
2 . It turns out that,

with a single exception, the sole restriction is the one implied by elasticity.

Proposition 4.10. Let G = C4
2 and let 2 ≤ l1 ≤ l2 be integers. Then [l1, l2] ∈ L(G) if and only if

l2/l1 ≤ 5/2 and (l1, l2) 6= (2, 5).

Proof. Suppose that [l1, l2] ∈ L(G) with integers 2 ≤ l1 ≤ l2 integers. Then (2.2) implies that l2/l1 ≤
ρ(G) = 5/2. Moreover, [2, 5] = [2,D(G)] /∈ L(G) by [19, Theorem 6.6.3].

Conversely, we need to show that for integers 2 ≤ l1 ≤ l2 with (l1, l2) 6= (2, 5) and l2/l1 ≤ 5/2, we
have [l1, l2] ∈ L(G). We start with an observation that reduces the problem to constructing these sets of
intervals for extremal choices of the endpoints.

Let k ∈ N. If m ∈ N such that [m,m + k] ∈ L(G), then y + [m,m + k] ∈ L(G) for all y ∈ N0. Thus
let mk = max{2, ⌈ 2k

3 ⌉} and we only need to prove that [mk,mk + k] ∈ L(G).
For k ∈ [1, 5] we are going to realize sets [mk,mk + k] as sets of lengths. Then we handle the case

k ≥ 6.
If k ∈ {1, 3}, then the sets [2, 3], [3, 6] ∈ L(C3

2 ) ⊂ L(G). To handle the case k = 2, we have to show
that [2, 4] ∈ L(G). If

U1 = e0 · . . . · e4 and U2 = e1e2(e1 + e3)(e2 + e4)(e3 + e4),

then max L(U1U2) < 5, and

U1U2 =
(
e0e1e2(e3 + e4)

)(
(e1 + e3)e1e3

)(
(e2 + e4)e2e4

)

=
(
e0(e1 + e3)(e2 + e4)

)(
e21

)(
e22

)(
(e3 + e4)e3e4

)
,

shows that L(U1U2) = [2, 4]. It remains to verify the following assertions.

A1. [3, 7] ∈ L(G) (this settles the case k = 4).
A2. [4, 9] ∈ L(G) (this settles the case k = 5).
A3. Let k ≥ 6. Then [⌈ 2k

3 ⌉, ⌈ 2k
3 ⌉+ k] ∈ L(G).

Proof of A1. Clearly,

U1 = e0 · . . . · e4, U2 = e1e2(e1 + e3)(e2 + e4)(e3 + e4), and U3 = (e1 + e3)(e2 + e4)e3e4(e1 + e2)

are minimal zero-sum sequences of lengths 5. Since

U1U2U3 =
(
e0(e1 + e2)(e3 + e4)

)(
e21

)(
e22

)(
e23

)(
e24

)(
(e1 + e3)

2
)(

(e2 + e4)
2
)

=
(
e0(e1 + e2)(e3 + e4)

)(
(e1 + e3)e1e3

)2(
(e2 + e4)

2
)(

e22

)(
e24

)

=
(
e0(e1 + e2)(e3 + e4)

)(
(e1 + e3)e1e3

)2(
(e2 + e4)e2e4

)2

= U2

(
e0(e1 + e2)(e1 + e3)e1e4

)(
(e2 + e4)e2e4

)(
e23

)
,

it follows that L(U1U2U3) = [3, 7].
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Proof of A2. We use the same notation as in A1, set U4 = (e1 + e2)(e1 + e3)(e2 + e4)(e3 + e4), and
assert that L(U2

1U2U4) = [4, 9]. Clearly, 4 ∈ L(U2
1U2U4) and maxL(U2

1U2U4) < 10. Since

U2
1U2U4 =

(
e0e1e2(e3 + e4)

)(
(e1 + e3)e1e3

)(
(e2 + e4)e2e4

)
U1U4

=
(
e0(e1 + e3)(e2 + e4)

)(
e21

)(
e22

)(
(e3 + e4)e3e4

)
U1U4

=

4∏

ν=0

(
e2ν
)
U2U4

=
(
(e1 + e3)

2
)(

(e2 + e4)
2
)(

(e3 + e4)e3e4

)2(
e20

)(
e21

)(
e22

)(
(e1 + e2)e1e2

)

=
(
(e1 + e3)

2
)(

(e2 + e4)
2
)(

(e3 + e4)
2
)(

e23

)(
e24

)(
e20

)(
e21

)(
e22

)(
(e1 + e2)e1e2

)

the assertion follows.

Proof of A3. We proceed by induction on k. For k = 6, we have to verify that [4, 10] ∈ L(G). We
use the same notation as in A1, and assert that L(U2

1U
2
2 ) = [4, 10]. Clearly, {4, 10} ⊂ L(U2

1U
2
2 ) ⊂ [4, 10].

Since

U2
1U

2
2 =

(
e0e1e2(e3 + e4)

)(
(e1 + e3)e1e3

)(
(e2 + e4)e2e4

)
U1U2

=
(
e0e1e2(e3 + e4)

)2(
(e1 + e3)e1e3

)2(
(e2 + e4)e2e4

)2

=

4∏

ν=0

(
e2ν
)
U2
2

=
(
e0(e1 + e3)(e2 + e4)

)2(
e21

)2(
e22

)2(
(e3 + e4)e3e4

)2

=
(
(e1 + e3)

2
)(

(e2 + e4)
2
)(

(e3 + e4)e3e4

)2(
e20

)(
e21

)2(
e22

)2

it follows that [5, 9] ⊂ L(U2
1U

2
2 ), and hence L(U2

1U
2
2 ) = [4, 10].

If k = 7, then [5, 12] ⊃ L(U3
1U2U3) ⊃ L(U1U2U3) + L(U2

1 ) = [3, 7] + {2, 5} = [5, 12] which implies that
[5, 12] ∈ L(G). If k = 8, then [6, 14] ⊃ L(U4

1U2U4) ⊃ L(U2
1U2U4) + L(U2

1 ) = [4, 9] + {2, 5} = [6, 14] which
implies that [6, 14] ∈ L(G). Suppose that k ≥ 9, and that the assertion holds for all k′ ∈ [6, k− 1]. Then

the set [⌈ 2(k−3)
3 ⌉, ⌈ 2(k−3)

3 ⌉+ k − 3] ∈ L(G). This implies that [⌈ 2k
3 ⌉, ⌈ 2k

3 ⌉+ k] = [⌈ 2(k−3)
3 ⌉, ⌈ 2(k−3)

3 ⌉+ k−
3] + {2, 5} ∈ L(G). �

We now proceed to prove Theorem 4.8.

Proof of Theorem 4.8. Let (e1, e2, e3, e4) be a basis of G = C4
2 . We set e0 = e1 + e2 + e3 + e4, U =

e0e1e2e3e4, and V = e1e2e3(e1 + e2 + e3).

Step 0. Some elementary constructions.
Let t1 ≥ 2, t2 ≥ 2, t = t1 + t2, and

Lt1,t2 =

{
{t} ∪ [t+ 2, 5⌊t1/2⌋+ 4(t/2− ⌊t1/2⌋)] if t is even ,

{t} ∪ [t+ 2, 5⌊t1/2⌋+ 4((t− 1)/2− ⌊t1/2⌋) + 1] if t is odd .

Since L(U2V 2) = {4} ∪ [6, 9], we have that L(U t1V t2) ⊃ L(U2V 2) + L(U t1−2V t2−2) = Lt1,t2 . Since
t+ 1 6∈ L(U t1V t2), we infer that

(4.9) L(U t1V t2) = Lt1,t2 .
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Since L(U2V ) = {3, 5, 6} and L(U3V ) = {4, 6, 7, 9}, it follows that for all r ≥ 2

L(U rV ) =

{
L(U2V ) + L(U r−2), if r is even ,

L(U3V ) + L(U r−3), if r is odd ,
(4.10)

=

{
r + 1 + {0, 2, 3}+ 3 · [0, r/2− 1], if r is even ,

r + 1 + {0, 2, 3}+ 3 · [0, (r − 1)/2− 1] ∪ {r + 1 + (3r − 3)/2 + 2}, if r is odd .

Since L(U2V e24e
2
0) = {4, 5, 7, 8} and L(U3V e24e

2
0) = {5, 6, 8, 9, 11}, it follows that for all r ≥ 2

L(U rV e24e
2
0) =

{
L(U3V e24e

2
0) + L(U r−3), if r is odd ,

L(U2V e24e
2
0) + L(U r−2), if r is even ,

(4.11)

=

{
r + 2 + {0, 1, 3}+ 3 · [0, (r + 1)/2− 1], if r is odd ,

r + 2 + {0, 1, 3}+ 3 · [0, r/2− 1] ∪ {r + 2 + 3r/2 + 1}, if r is even .
.

Step 1. We prove that for every L ∈ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 ∪ L7 ∪ L8, there exists an A ∈ B(G) such
that L = L(A). We distinguish seven cases.

If L = y + 2k + 3 · [0, k] ∈ L2 with y, k ∈ N0, then L = L(0yU2k) ∈ L(G).
If L ∈ L3, then the claim follows from Proposition 4.10.
If L = y + 2k + 2 · [0, k] ∈ L4 with y, k ∈ N0, then Proposition 3.3.4 implies that L ∈ L(C3

2 ) ⊂ L(G).
Suppose that L = y + k + 2 + ([0, k] ∪ {k + 2}) ∈ L5 with k ∈ N and y ∈ N0. If k is even, then we set

A = 0yV 2(e1 + e4)
k(e2 + e4)

k(e3 + e4)
k(e1 + e2 + e3 + e4)

k and obtain that L(A) = L. If k is odd, then
we set A = 0yV 2(e1 + e4)

k+1(e2 + e4)
k+1(e3 + e4)

k−1(e1 + e2 + e3 + e4)
k−1 and obtain that L(A) = L.

Suppose that L = y + 2⌈k
3 ⌉+ 2 + ({0} ∪ [2, k + 2]) ∈ L6 with

(
k ≥ 5 or k = 3

)
and y ∈ N0. If k ≡ 0

mod 3, then we set A = 0yU2k/3V 2 and hence L(A) = L by Equation (4.9). If k ≡ 2 mod 3, then we set
A = 0yU (2k−4)/3V 4 and hence L(A) = L by (4.9). If k ≡ 1 mod 3, then we set A = 0yU (2k−8)/3V 6 and
obtain that L(A) = L by Equation (4.9).

Suppose that L ∈ L7. If L = y + 2k + 3 + {0, 1, 3}+ 3 · [0, k] with y ∈ N0 and k ∈ N0, then we set
A = 0yU2k+1V e24(e1 + e2 + e3 + e4)

2 and obtain that L(A) = L by Equation (4.11). If L = y + 2k + 4 +
{0, 1, 3}+3 · [0, k]∪{y+5k+8} with y ∈ N0 and k ∈ N0, then we set A = 0yU2k+2V e24(e1+e2+e3+e4)

2

and obtain that L(A) = L by Equation (4.11).
Suppose that L ∈ L8. If L = y + 2k + 3 + {0, 2, 3}+ 3 · [0, k] with y ∈ N0 and k ∈ N0, then we set

A = 0yU2k+2V and hence L(A) = L by Equation (4.10). If L = y+2k+4+{0, 2, 3}+3· [0, k]∪{y+5k+9}
with y ∈ N0 and k ∈ N0, then we set A = 0yU2k+3V e24(e1 + e2 + e3 + e4)

2 and obtain that L(A) = L by
Equation (4.10).

Step 2. We prove that for every A ∈ B(G•), L(A) ∈ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 ∪ L7 ∪ L8.
Let A ∈ B(G•). We may suppose that ∆(L(A)) 6= ∅. By Lemma 4.9.1 we have to distinguish four

cases.

CASE 1: ∆(L(A)) = {3}.
By Lemma 4.9, there is a basis of G, say (e1, e2, e3, e4), such that supp(A) = {e1, . . . , e4, e0}. Let

n ∈ N0 be maximal such that U2n |A. Then there exist a proper subset I ⊂ [0, 4], a tuple (mi)i∈I ∈ N
(I)
0 ,

and ǫ ∈ {0, 1} such that

A = U ǫU2n
∏

i∈I

(e2i )
mi .

Using [23, Lemma 3.6.1], we infer that

L(A) = ǫ+
∑

i∈I

mi + L(U2n) = ǫ +
∑

i∈I

mi + (2n+ 3 · [0, n]) ∈ L2 .

CASE 2: ∆(L(A)) = {1}.
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Then L(A) is an interval, and it is a direct consequence of Proposition 4.10 that L(A) ∈ L3.

CASE 3: ∆(L(A)) = {2}.
The following reformulation turns out to be convenient. Clearly, we have to show that for every

L ∈ L(G) with ∆(L) = {2} there exist y′ ∈ N0 and k′ ∈ N such that L = y′ + 2 · [k′, 2k′], which
is equivalent to ρ(L) = maxL/minL ≤ 2. Assume to the contrary that there is an L ∈ L(G) with
∆(L) = {2} such that maxL ≥ 2minL + 1. We choose one such L ∈ L(G) with minL being minimal,
and we choose a B ∈ B(G) with L(B) = L. Since minL is minimal, we obtain that 0 ∤ B. Consequently,
|B| ≥ 2maxL ≥ 4minL + 2. Since D(G) = 5, it follows that a factorization of minimal length of B
contains at least two (possibly equal) minimal zero-sum sequences U1, U2 with |U1| = |U2| = 5, say
U1 = e0 · . . . · e4.

If U1 = U2, then 5 ∈ L(U1U2) and thus minL + 3 ∈ L, contradicting the fact that ∆(L) = {2}. Thus
U1 6= U2. We assert that 3 ∈ L(U1U2), and thus obtain again a contradiction to the fact that ∆(L) = {2}.

Let g ∈ G with g |U2 but g ∤ U1. Then g is the sum of two elements from U1, say g = e1 + e2.
Therefore g(e1e2)

−1U1 is a minimal zero-sum sequence, whereas the sequence (e1e2)g
−1U2 cannot be a

minimal zero-sum sequence because it has length 6. Since g−1U2 is zero-sum free, every minimal zero-sum
sequence dividing (e1e2)g

−1U2 must contain e1 or e2. This shows that L((e1e2)g
−1U2) = {2} and thus

3 ∈ L(U1U2).

CASE 4: ∆(L(A)) = {1, 2}.
Let k ∈ L(A) be minimal such that A has a factorization of the form A = U1 · . . . ·Uk = V1 · . . . · Vk+2,

where k + 1 6∈ L(A) and U1, . . . , Uk, V1, . . . , Vk+2 ∈ A(G) with |U1| ≥ |U2| ≥ . . . ≥ |Uk|. Without
restriction we may suppose that the tuple

(4.12) (|{i ∈ [1, k] | |Ui| = 5}|, |{i ∈ [1, k] | |Ui| = 4}|, |{i ∈ [1, k] | |Ui| = 3}|) ∈ N3
0

is maximal (with respect to the lexicographic order) among all factorizations of A of length k. By
definition of k, we have [min L(A), k] ∈ L(A). Let k0 ∈ [2, k] such that |Ui| ≥ 3 for every i ∈ [1, k0] and
|Ui| = 2 for every i ∈ [k0 + 1, k]. We start with the following assertion.

A.

1. For each two distinct i, j ∈ [1, k0], we have 3 6∈ L(UiUj).
2. For each two distinct i, j ∈ [1, k0] with |Ui| = |Uj | = 5, we have Ui = Uj.
3. For each two distinct i, j ∈ [1, k0] with |Ui| = 5 and |Uj | = 4, we have | gcd(Ui, Uj)| = 3.
4. Let i, j ∈ [1, k0] be distinct with |Ui| = |Uj | = 4, say Ui = f1f2f3(f1+f2+f3) where (f1, f2, f3, f4)

a basis of G. Then Uj = Ui, or Uj = (f1 + f4)(f2 + f4)(f3 + f4)(f1 + f2 + f3 + f4), or Uj =
f4(f1 + f2 + f4)(f2 + f3+ f4)(f1 + f3+ f4). Furthermore, if Ui 6= Uj , then for all t ∈ [1, k0] \ {i, j},
we have |Ut| 6= 4.

5. Let i, j ∈ [1, k0] be distinct with |Ui| = 5 and |Uj| = 3. Then there exist g1, g2, g3 ∈ G such that
g1g2g3 |Ui and Uj = (g1 + g2)(g2 + g3)(g3 + g1). Furthermore, for all t ∈ [1, k0] \ {i, j}, we have
|Ut| = 3.

6. Let i, j ∈ [1, k0] be distinct with |Ui| = 4 and |Uj | = 3. Then | gcd(Ui, Uj)| = 0, and there exist
g, g1, g2 ∈ G such that g |Uj , g1g2 |Ui and g = g1 + g2. Furthermore, for all t ∈ [1, k0] \ {i, j}, we
have |Ut| = 3.

7. For each two distinct i, j ∈ [1, k0] with |Ui| = |Uj | = 3, we have | gcd(Ui, Uj)| = 0.

Proof of A.
1. If there exist distinct i, j ∈ [1, k0] such that 3 ∈ L(UiUj), then k + 1 ∈ L(A), a contradiction.

2. Since |Ui| = 5 and Uj 6= Ui, there exist g, g1, g2 ∈ G with g |Uj and g1g2 |Ui such that g = g1 + g2.
Thus Ui(g1g2)

−1g is an atom and Ujg
−1g1g1 is a product of two atoms which implies that 3 ∈ L(UiUj),

a contradiction.
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3. Since |Ui| = 5 and Uj 6= Ui, there exist g, g1, g2 ∈ G with g |Uj and g1g2 |Ui such that g = g1 + g2.
Thus gg1g2 is an atom and UiUj(gg1g2)

−1 is a sequence of length 6. By 1., 2 /∈ L(UiUj(gg1g2)
−1) which

implies that L(UiUj(gg1g2)
−1) = {3} and hence | gcd(Ui, Uj)| = 3.

4. We set G1 = 〈f1, f2, f3〉 and distinguish three cases.
Case (i): Uj ∈ B(G1). Since 3 /∈ L(UiUj), we obtain that Uj = Ui.
Case (ii): Uj = (g1 + f4)(g2 + f4)g3g4 with g1g2g3g4 ∈ B(G1).
If g3, g4 ∈ {f1, f2, f3, f1+ f2+ f3}, then 3 ∈ L(UiUj), a contradiction. Thus, without loss of generality,

we may assume that g3 = f1 + f2 /∈ {f1, f2, f3, f1 + f2 + f3}. Thus g3f3(f1 + f2 + f3) is an atom
and (g1 + f4)(g2 + f4)f1f2g4 is a zero-sum sequence of length 5. Since 3 /∈ L(UiUj), we have that
(g1 + f4)(g2 + f4)f1f2g4 is an atom of length 5, a contradiction to the maximality condition in Equation
(4.12).

Case (iii): Uj = (g1 + f4)(g2 + f4)(g3 + f4)(g4 + f4) with g1g2g3g4 ∈ B(G1).
First, suppose that g1g2g3g4 is an atom. If g1g2g3g4 6= Ui, then there exist an element h ∈ {f1, f2, f3, f1+

f2 + f3} and distinct t1, t2 ∈ [1, 4], say t1 = 1, t2 = 2, such that h = g1 + g2 = (g1 + f4) + (g2 + f4).
Thus Uih

−1(g1 + f4)(g2 + f4) is a zero-sum sequence of length 5 and h(g3 + f4)(g4 + f4) is an atom. It
follows that Uih

−1(g1+f4)(g2f4) is atom of length 5 since 3 /∈ L(UiUj), a contradiction to the maximality
condition in Equation (4.12). Therefore g1g2g3g4 = Ui which implies that Uj = (f1 + f4)(f2 + f4)(f3 +
f4)(f1 + f2 + f3 + f4).

Second, suppose that g1g2g3g4 is not an atom. Without loss of generality, we may assume that g1 = 0
and g2g3g4 is an atom. If {g2, g3, g4} ∩ {f1, f2, f3, f1 + f2 + f3} 6= ∅, say g2 ∈ {f1, f2, f3, f1 + f2 + f3},
then g2(g3 + f4)(g4 + f4) is an atom and Uig

−1
2 f4(g2 + f4) is a zero-sum sequence of length 5. It follows

that Uig
−1
2 f4(g2 + f4) is atom of length 5 because 3 /∈ L(UiUj), a contradiction to the maximality

condition in Equation (4.12). Therefore {g2, g3, g4} ∩ {f1, f2, f3, f1 + f2 + f3} = ∅ which implies that
g2g3g4 = (f1 + f2)(f2 + f3)(f1 + f3) and hence Uj = f4(f1 + f2 + f4)(f2 + f3 + f4)(f1 + f3 + f4).

Now suppose that Ui 6= Uj, and assume to the contrary there exists a t ∈ [1, k0] \ {i, j} such that
|Ut| = 4. If Ut /∈ {Ui, Uj}, then UiUjUt = f1f2f3(f1 + f2 + f3)(f1 + f4)(f2 + f4)(f3 + f4)(f1 + f2 +
f3 + f4)f4(f1 + f2 + f4)(f2 + f3 + f4)(f1 + f3 + f4) = f1(f2 + f4)(f1 + f2 + f4)f2(f3 + f4)(f2 + f3 +
f4)f3(f1+f4)(f1+f3+f4)f4(f1+f2+f3)(f1+f2+f3+f4). Thus 4 ∈ L(UiUjUt) and hence k+1 ∈ L(A),
a contradiction. If Ut ∈ {Ui, Uj}, then we still have that 4 ∈ L(UiUjUt) and hence k + 1 ∈ L(A), a
contradiction.

5. Since 3 /∈ L(UiUj), we obtain that | gcd(Ui, Uj)| = 0. Every h ∈ supp(Uj) is the sum of two distinct
elements from supp(Ui). Thus there exist g1, g2, g3 ∈ G with g1g2g3 |Ui such that Uj = (g1 + g2)(g2 +
g3)(g3 + g1). Now we choose an element t ∈ [1, k0] \ {i, j}, and have to show that |Ut| = 3. If |Ut| = 5,
then Ut = Ui by 2. and hence 4 ∈ L(UiUtUj) which implies that k+1 ∈ L(A), a contradiction. If |Ut| = 4,
then | gcd(Ui, Ut)| = 3 by 3. and hence 4 ∈ L(UiUtUj) which implies that k + 1 ∈ L(A), a contradiction.

6. If | gcd(Ui, Uj)| = 2, then 3 ∈ L(UiUj), a contradiction. If | gcd(Ui, Uj)| = 1, then U1U2 = W1W2

with W1,W2 ∈ A(G) and |W2| = 5, a contradiction to the maximality condition in Equation (4.12).
Thus we obtain that | gcd(Ui, Uj)| = 0. Let (f1, f2, f3, f4) be a basis and Ui = f1f2f3(f1 + f2 + f3).
Since |Uj | = 3, there exists a g ∈ supp(Uj) such that g ∈ 〈f1, f2, f3〉. Since | gcd(Ui, Uj)| = 0, there exist
g1, g2 ∈ G such that g1g2 |Ui and g = g1 + g2.

Now we choose an element t ∈ [1, k0] \ {i, j} and have to show that |Ut| = 3. Note that 5. implies
that |Ut| 6= 5, and we assume to the contrary that |Ut| = 4. Without restriction we may assume that
g = f1 + f2, and by 4., we distinguish three cases. If Ut = Ui, then f2

1 , f
2
2 , gUi(f1f2)

−1, Ut(f1f2)
−1Ujg

−1

are atoms and hence 4 ∈ L(UiUtUj) which implies that k+1 ∈ L(A), a contradiction. If Ut = (f1+f4)(f2+
f4)(f3+f4)(f1+f2+f3+f4), then g(f1+f2+f3)(f1+f2+f3+f4)(f1+f4)f2 is an atom of length 5 dividing
UiUjUt and UiUjUt(g(f1+f2+f3)(f1+f2+f3+f4)(f1+f4)f2)

−1 is a product of two atoms, a contradiction
to the maximality condition in Equation (4.12). If Ut = f4(f1 + f2 + f4)(f2 + f3 + f4)(f1 + f3 + f4), then
gf2f3f4(f1 + f3 + f4) is an atom of length 5 dividing UiUjUt and UiUjUt(gf2f3f4(f1 + f3 + f4))

−1 is a
product of two atoms, a contradiction to the maximality condition in Equation (4.12).
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7. If | gcd(Ui, Uj)| ≥ 2, then Ui = Uj and hence 3 ∈ L(UiUj) which implies that k + 1 ∈ L(A), a
contradiction. If | gcd(Ui, Uj)| = 1, then UiUj = W1W2 with W1,W2 ∈ A(G), |W1| = 2, and |W2| = 4, a
contradiction to the maximality condition in Equation (4.12). Therefore | gcd(Ui, Uj)| = 0. �[Proof of
A]

Note that A.5 implies that {|Ui| | i ∈ [1, k0]} 6= {3, 4, 5}. Thus it remains to discuss the following six
subcases.

CASE 4.1. {|Ui| | i ∈ [1, k0]} = {3, 5}.
By A.5 and A.7, we obtain that |U1| = 5, |U2| = . . . = |Uk0

| = 3, and that U1 · . . . · Uk0
is square-free.

This implies that max L(U1 · . . . · Uk0
) = k0, and hence maxL(A) = maxL(U0 · . . . · Uk0

) + k − k0 = k, a
contradiction.

CASE 4.2. {|Ui| | i ∈ [1, k0]} = {3, 4}.
By A.6 and A.7, we obtain that |U1| = 4, |U2| = . . . = |Uk0

| = 3, and that U1 · . . . · Uk0
is square-free.

This implies that max L(U1 · . . . · Uk0
) = k0, and hence maxL(A) = maxL(U0 · . . . · Uk0

) + k − k0 = k, a
contradiction.

CASE 4.3. {|Ui| | i ∈ [1, k0]} = {3}.
By A.7, we obtain that U1 · . . . · Uk0

is square-free. This implies that max L(U1 · . . . · Uk0
) = k0, and

hence maxL(A) = maxL(U0 · . . . · Uk0
) + k − k0 = k, a contradiction.

CASE 4.4. {|Ui| | i ∈ [1, k0]} = {5}.

ByA.2, it follows that A = Uk0

1 Uk0+1 ·. . .·Uk. If supp(Uk0+1 ·. . .·Uk) ⊂ supp(U1), then ∆(L(A)) = {3},
a contradiction. Thus there exists j ∈ [k0 + 1, k] such that Uj = g2 for some g 6∈ supp(U1). Then there
exist g1, g2 ∈ G such that g1g2 |U1 and g = g1 + g2. It follows that U2

1Uj = g21g
2
2(U1(g1g2)

−1g)2, where
g21 , g

2
2 , U1(g1g2)

−1g are atoms. Therefore 4 ∈ L(U2
1Uj) and hence k + 1 ∈ L(A), a contradiction.

CASE 4.5. {|Ui| | i ∈ [1, k0]} = {4}.
Assume to the contrary, that k0 ≥ 3. Then A.4 implies that U1 · . . . · Uk0

= Uk0

1 , and we set
G1 = 〈supp(U1)〉. If there exists g ∈ supp(Uk0+1 · . . . ·Uk) such that g ∈ G1 \ supp(U1), then 4 ∈ L(U2

1 g
2)

and hence k + 1 ∈ L(A), a contradiction. If there exist distinct g1, g2 ∈ supp(Uk0+1 · . . . · Uk) such that
g1 /∈ G1 and g2 /∈ G1, then g1 + g2 ∈ G1. Since g1 + g2 ∈ supp(U1) implies that 5 ∈ L(U2

1 g
2
1g

2
2) and

k+1 ∈ L(A), we obtain that g1+g2 ∈ G1\supp(U1). Then U2
1 g

2
1g

2
2 = W 2

1W2W3 whereW1,W2,W3 ∈ A(G)
with |W1| = 4, W1 6= U1, and |W2| = |W3| = 2. Thus W 2

1U3 · . . . · Uk is a factorization of A of length
k satisfying the maximality condition of Equation 4.12 and hence applying A.4 to this factorization, we
obtain a contradiction. Therefore supp(Uk0+1 · . . . · Uk) ⊂ supp(U1) ∪ {g} where g is independent from
supp(U1) and hence supp(A) ⊂ supp(U1) ∪ {g} which implies that ∆(L(A)) = {2}, a contradiction.

Therefore it follows that k0 = 2. Then U1 = U2 (since otherwise we would have maxL(A) = k), and
we obtain that L(A) = [min L(A), k]∪{k+2}. Assume to the contrary that there exists a W ∈ A(G) such
that W |A and |W | = 5. Then there exist g, g1, g2 ∈ G such that g |U1, g1g2 |W , and g = g1 + g2, and
hence |{g1, g2}∩supp(U1)| ≤ 1. If {g1, g2}∩supp(U1) = ∅, then there exist distinct t1, t2 ∈ [k0+1, k] such
that Ut1 = g21 and Ut2 = g22 . Thus 5 ∈ L(U1U2Ut1Ut2) and hence k + 1 ∈ L(A), a contradiction. Suppose
that |{g1, g2} ∩ supp(U1)| = 1, say g1 /∈ supp(U1) and g2 ∈ supp(U1). Then there exists t ∈ [k0 + 1, k]
such that Ut = g21 . Therefore 4 ∈ L(U1U2Ut) and hence k + 1 ∈ L(A), a contradiction.

Thus every atom W with W |A has length |W | < 5. It follows that min L(A) ≥ ⌈ 2max L(A)
4 ⌉ =

⌈max L(A)
2 ⌉ and hence L(A) ∈ L5.

CASE 4.6. {|Ui| | i ∈ [1, k0]} = {4, 5}.
By A.3 and A.4, we obtain that |{U1, . . . , Uk0

}| = 2. Without restriction we may assume that
U1 · . . . · Uk0

= Uk1V k2 where k1, k2 ∈ N with k0 = k1 + k2 and V = e1e2e3(e1 + e2 + e3) (recall that
(e1, . . . , e4) is a basis of G, e0 = e1 + e2 + e3 + e4, and U = e1e2e3e4e0). We claim that

• supp(Uk0+1 · . . . · Uk) ⊂ supp(UV ).
• If k1 ≥ 2, then supp(Uk0+1 · . . . · Uk) ⊂ supp(U), and
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• if k2 ≥ 2, then {e4, e0} 6⊂ supp(Uk0+1 · . . . · Uk).

Indeed, assume to the contrary that g ∈ supp(Uk0+1 · . . . · Uk) \ supp(UV ). By symmetry, we only
need to consider g = e1 + e2 and g = e1 + e4 and both cases imply that 4 ∈ L(UV g2), a contradiction
to k + 1 /∈ L(A). If k1 ≥ 2 and g = e1 + e2 + e3 ∈ supp(Uk0+1 · . . . · Uk), then 4 ∈ L(U2g2) and
k + 1 ∈ L(A), a contradiction. Thus if k1 ≥ 2, then supp(Uk0+1 · . . . · Uk) ⊂ supp(U). If k2 ≥ 2 and
{e4, e0} ⊂ supp(Uk0+1 · . . . · Uk), then 5 ∈ L(V 2e24e

2
0) and hence k + 1 ∈ L(A), a contradiction.

Thus all three claims are proved, and we distinguish three subcases.

CASE 4.6.1. k1 = 1.
If {e4, e0} 6⊂ supp(Uk0+1 · . . . · Uk), then L(A) = L(UV k2) + k − k0 = L(V k0) + k − k0 and hence

∆(L(A)) = {2}, a contradiction. If {e4, e0} ⊂ supp(Uk0+1 · . . . ·Uk), then k2 = 1 and we may assume that
Uk0+1 = e24 and that Uk0+2 = e20. Then L(A) = L(UV Uk0+1Uk0+2) + k − k0 − 2 = {k − 1, k, k + 2} with
k ≥ 4, and hence L(A) ∈ L5.

CASE 4.6.2. k1 ≥ 2 and k2 ≥ 2.
Thus supp(Uk0+1 · . . . ·Uk) is independent and it follows that supp(Uk0+1 · . . . ·Uk) ⊂ {e1, e2, e3, e4} or

supp(Uk0+1 · . . . · Uk) ⊂ {e1, e2, e3, e0}. Then L(A) = L(Uk1V k2) + k − k0. By Equation (4.9),

L(Uk1V k2) =

{
{k0} ∪ [k0 + 2, 5⌊k1/2⌋+ 4(k0/2− ⌊k1/2⌋)] if k0 = k1 + k2 is even ,

{k0} ∪ [k0 + 2, 5⌊k1/2⌋+ 4((k0 − 1)/2− ⌊k1/2⌋) + 1] if k0 = k1 + k2 is odd .

Let ℓ = max L(Uk1V k2)− k0 − 2 and hence

ℓ =





k0 + ⌊
k1
2
⌋ − 2 if k0 ≥ 4 is even ,

k0 + ⌊
k1
2
⌋ − 3 if k0 ≥ 5 is odd .

Since k1 ≥ 2 and k2 ≥ 2, we obtain that ℓ ≥ 3 and ℓ 6= 4. We also have that

ℓ ≤





k0 + ⌊
k0 − 2

2
⌋ − 2 =

3k0
2

− 3 if k0 is even ,

k0 + ⌊
k0 − 2

2
⌋ − 3 =

3k0 − 9

2
if k0 is odd .

Therefore

k0 ≥





2ℓ

3
+ 2 if k0 is even ,

2ℓ

3
+ 3 if k0 is odd ,

and hence

k0 ≥





2⌈
ℓ

3
⌉+ 2 if k0 is even ,

2⌈
ℓ

3
⌉+ 2 if k0 is odd .

It follows that L(Uk1V k2) ∈ L6 which implies that L(A) ∈ L6.

CASE 4.6.3. k1 ≥ 2 and k2 = 1.
Then supp(Uk0+1 · . . . · Uk) ⊂ {e1, e2, e3, e4, e0}. If {e4, e0} 6⊂ supp(Uk0+1 · . . . · Uk), then

L(A) = L(Uk1V ) + k − k0

=

{
k + {0, 2, 3}+ 3 · [0, k1/2− 1], if k1 is even ,

k + {0, 2, 3}+ 3 · [0, (k1 − 1)/2− 1] ∪ {k + (3k1 − 3)/2 + 2}, if k1 is odd

by Equation (4.10). Therefore L(A) ∈ L8.
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If {e4, e0} ⊂ supp(Uk0+1 · . . . · Uk), then we may assume that Uk0+1 = e24 and that Uk0+2 = e20. Thus

L(A) = L(Uk1V Uk0+1Uk0+2) + k − k0 − 2

=

{
k − 1 + {0, 1, 3}+ 3 · [0, (k1 + 1)/2− 1], if k1 is odd ,

k − 1 + {0, 1, 3}+ 3 · [0, k1/2− 1] ∪ {k + 3k1/2 + 1}, if k1 is even ,

by Equation (4.11) and hence L(A) ∈ L7. �

5. Sets of lengths of weakly Krull monoids

It is well-known that – under reasonable algebraic finiteness conditions – the Structure Theorem for
Sets of Lengths holds for weakly Krull monoids (as it is true for transfer Krull monoids of finite type,
see Proposition 3.2). In spite of this common feature we will demonstrate that systems of sets of lengths
for a variety of classes of weakly Krull monoids are different from the system of sets of lengths of any
transfer Krull monoid (apart from well-described exceptional cases; see Theorems 5.5 to 5.8). Since half-
factorial monoids are transfer Krull monoids, and since there are half-factorial weakly Krull monoids,
half-factoriality is such a natural exceptional case.

So far there are only a couple of results in this direction. In [14], Frisch showed that Int(Z), the ring
of integer-valued polynomials over Z, is not a transfer Krull domain (nevertheless, the system of sets of
lengths of Int(Z)• coincides with L(G) for an infinite abelian group G). To mention a result by Smertnig,
let O be the ring of integers of an algebraic number field K, A a central simple algebra over K, and R
a classical maximal O-order of A. Then R is a non-commutative Dedekind domain and in particular an
HNP ring (see [29, Sections 5.2 and 5.3]). Furthermore, R is a transfer Krull domain if and only if every
stably free left R-ideal is free ([32, Theorems 1.1 and 1.2]).

We gather basic concepts and properties of weakly Krull monoids and domains (Propositions 5.1 and
5.2). In the remainder of this section, all monoids and domains are supposed to be commutative.

Let H be a monoid (hence commutative, cancelative, and with unit element). We denote by q(H)
the quotient group of H , by Hred = H/H× the associated reduced monoid of H , by X(H) the set of
minimal nonempty prime s-ideals of H , and by m = H \H× the maximal s-ideal. Let I∗

v (H) denote the
monoid of v-invertible v-ideals of H (with v-multiplication). Then Fv(H)× = q(I∗

v (H)) is the quotient
group of fractional v-invertible v-ideals, and Cv(H) = Fv(H)×/{xH | x ∈ q(H)} is the v-class group of
H (detailed presentations of ideal theory in commutative monoids can be found in [27, 19]). We denote

by Ĥ ⊂ q(H) the complete integral closure of H , and by (H : Ĥ) = {x ∈ q(H) | xĤ ⊂ H} ⊂ H the
conductor of H . A submonoid S ⊂ H is said to be saturated if S = q(S) ∩ H . For the definition and
discussion of the concepts of being faithfully saturated or being locally tame we refer to [19, Sections 1.6
and 3.6].

To start with the local case, we recall that H is said to be

• primary if m 6= ∅ and for all a, b ∈ m there is an n ∈ N such that bn ⊂ aH .
• strongly primary if m 6= ∅ and for every a ∈ m there is an n ∈ N such that mn ⊂ aH . We denote
by M(a) the smallest n having this property.

• a discrete valuation monoid if it is primary and contains a prime element (equivalently, Hred
∼=

(N0,+)).

Furthermore, H is said to be

• weakly Krull ([27, Corollary 22.5]) if

H =
⋂

p∈X(H)

Hp and {p ∈ X(H) | a ∈ p} is finite for all a ∈ H .

• weakly factorial if one of the following equivalent conditions is satisfied ([27, Exercise 22.5]) :
– Every non-unit is a finite product of primary elements.
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– H is a weakly Krull monoid with trivial t-class group.

Clearly, every localization Hp of H at a minimal prime ideal p ∈ X(H) is primary, and a weakly Krull
monoid H is v-noetherian if and only if Hp is v-noetherian for each p ∈ X(H). Every v-noetherian
primary monoid is strongly primary and v-local ([20, Lemma 3.1]), and every strongly primary monoid is
a primary BF-monoid ([19, Section 2.7]). Therefore the coproduct of a family of strongly primary monoids
is a BF-monoid, and every coproduct of a family of primary monoids is weakly factorial. A v-noetherian
weakly Krull monoid H is weakly factorial if and only if Cv(H) = 0 if and only if Hred

∼= I∗
v (H).

By a numerical monoidH we mean an additive submonoid of (N0,+) such that N0\H is finite. Clearly,
every numerical monoid is v-noetherian primary, and hence it is strongly primary. Note that a numerical
monoid is half-factorial if and only if it is equal to (N0,+).

Let R be a domain. Then R• = R \ {0} is a monoid, and all arithmetic and ideal theoretic concepts
introduced for monoids will be used for domains in the obvious way. The domain R is weakly Krull (resp.
weakly factorial) if and only if its multiplicative monoid R• is weakly Krull (resp. weakly factorial).
Weakly Krull domains were introduced by Anderson, Anderson, Mott, and Zafrullah ([2, 3]). We recall
some most basic facts and refer to an extended list of weakly Krull domains and monoids in [21, Examples
5.7]. The monoid R• is primary if and only if R is one-dimensional and local. If R is one-dimensional local
Mori and its complete integral closure is Krull, then R• is strongly primary; if in addition, R is noetherian

or (R : R̂) 6= {0} or |X(R̂)| ≥ 2, then R• is locally tame ([20, Corollary 3.6]). Furthermore, every one-
dimensional semilocal Mori domain with nontrivial conductor is weakly factorial and the same holds
true for generalized Cohen-Kaplansky domains. It can be seen from the definition that one-dimensional
noetherian domains are v-noetherian weakly Krull domains.

Proposition 5.1 summarizes the main algebraic properties of v-noetherian weakly Krull monoids and
Proposition 5.2 recalls that their arithmetic can be studied via weak transfer homomorphisms to weakly
Krull monoids of very special form.

Proposition 5.1. Let H be a v-noetherian weakly Krull monoid.

1. The monoid I∗
v (H) is isomorphic to

∐
p∈X(H)(Hp)red. In particular, I∗

v (H) is weakly factorial and

v-noetherian.

2. Suppose that f = (H :Ĥ) 6= ∅. We set P∗ = {p ∈ X(H) | p ⊃ f}, and P = X(H) \ P∗.

(a) Then Ĥ is Krull, P∗ is finite, and Hp is a discrete valuation monoid for each p ∈ P. In
particular, I∗

v (H) is isomorphic to F(P)×
∏

p∈P∗(Hp)red.

(b) If H = {aH | a ∈ H} is the monoid of principal ideals of H, then H ⊂ I∗
v (H) is saturated.

Moreover, if H is the multiplicative monoid of a domain, then all monoids Hp are locally
tame and H ⊂ I∗

v (H) is faithfully saturated.

Proof. 1. See [21, Proposition 5.3].
2. For (a) we refer to [19, Theorem 2.6.5] and for (b) we refer to [19, Theorems 3.6.4 and 3.7.1]. �

Proposition 5.2. Let D = F(P)×
∏n

i=1 Di be a monoid, where P ⊂ D is a set of primes, n ∈ N0, and
D1, . . . , Dn are reduced primary monoids. Let H ⊂ D be a saturated submonoid, G = q(D)/q(H), and
GP = { p q(H) | p ∈ P} ⊂ G the set of classes containing primes.

1. There is a saturated submonoid B ⊂ F = F(GP )×
∏n

i=1 Di and a weak transfer homomorphism
θ : H → B. Moreover, if G is a torsion group, then there is a monomorphism q(F )/q(B) → G.

2. If G is a torsion group, then H is weakly Krull.

Proof. 1. See [19, Propositions 3.4.7 and 3.4.8].

2. See [21, Lemma 5.2]. �
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Note that, under the assumption of 5.1.2, the embedding H →֒ I∗
v (H) fulfills the assumptions imposed

on the embedding H →֒ D in Proposition 5.2. Thus Proposition 5.2 applies to v-noetherian weakly
Krull monoids. For simplicity and in order to avoid repetitions, we formulate the next results (including
Theorem 5.7) in the abstract setting of Proposition 5.2. However, v-noetherian weakly Krull domains
and their monoids of v-invertible v-ideals are in the center of our interest.

If (in the setting of Proposition 5.2) GP is finite, then F = F(GP )×
∏n

i=1 Di is a finite product of
primary monoids and B ⊂ F is a saturated submonoid. We formulate the main structural result for sets
of lengths in v-noetherian weakly Krull monoids in this abstract setting.

Proposition 5.3. Let D1, . . . , Dn be locally tame strongly primary monoids and H ⊂ D = D1×. . .×Dn

a faithfully saturated submonoid such that q(D)/q(H) is finite.

1. The monoid H satisfies the Structure Theorem for Sets of Lengths.

2. There is a finite abelian group G such that for every L ∈ L(H) there is a y ∈ N such that
y + L ∈ L(G).

Proof. 1. follows from [19, Theorem 4.5.4], and 2. follows from 1. and from Proposition 3.2.2. �

The next lemma on zero-sum sequences will be crucial in order to distinguish between sets of lengths
in weakly Krull monoids and sets of lengths in transfer Krull monoids.

Lemma 5.4. Let G be an abelian group and G0 ⊂ G a non-half-factorial subset.

1. There exists a half-factorial subset G1 ⊂ G0 with B(G1) 6= {1}.

2. There are M ∈ N and zero-sum sequences Bk ∈ B(G0) for every k ∈ N such that |L(Bk)| ≤ M but
min L(Bk) → ∞ as k → ∞.

Proof. 1. Since G0 is not half-factorial, there is a B ∈ B(G0) such that |L(B)| > 1. Thus supp(B) is
finite and not half-factorial, say supp(B) = {g1, . . . , gℓ} with ℓ ≥ 2. Without restriction we may suppose
that every proper subset of {g1, . . . , gℓ} is half-factorial. Assume to the contrary that for every subset
G1 ( {g1, . . . , gℓ} we have B(G1) = {1}. Since {g1, . . . , gℓ} is minimal non-half-factorial, there is an atom
A1 ∈ A({g1, . . . , gℓ}) such that vgi(A1) > 0 for every i ∈ [1, ℓ]. Since {g1, . . . , gℓ} is not half-factorial,
there is an atom A2 ∈ A({g1, . . . , gℓ}) distinct from A1, say

A1 = gk1

1 · . . . · gkℓ

ℓ and A2 = gt11 · . . . · gtℓℓ where ki ∈ N and ti ∈ N0 for every i ∈ [1, ℓ] .

Let τ ∈ [1, ℓ] such that tτ
kτ

= max{
tj
kj

| j ∈ [1, ℓ]}. Then kjtτ − tjkτ ≥ 0 for every j ∈ [1, ℓ] whence

W = Atτ
2 A−kτ

1 ∈ B({g1, . . . , gℓ} \ {gτ}) ,

which implies that W = 1. Therefore tτ
kτ

=
tj
kj

for every j ∈ [1, ℓ] and hence A1 |A2 or A2 |A1, a

contradiction.

2. Let B ∈ B(G0) with |L(B)| > 1. By 1., there exists a half-factorial subset G1 ( G0 such that
B(G1) 6= {1}. Let A ∈ A(G1) and Bk = AkB for every k ∈ N. Obviously there exists k0 ∈ N such that
L(Bk) = L(Ak−k0 )+L(Bk0

) = k−k0+L(Bk0
) for every k ≥ k0. Thus |L(Bk)| ≤ maxL(Bk0

)−min L(Bk0
)

and min L(Bk) = k − k0 +min L(Bk0
). �

Now we consider strongly primary monoids and work out a feature of their systems of sets of lengths
which does not occur in the system of sets of lengths of any transfer Krull monoid. To do so we study
the set {ρ(L) | L ∈ L(H)} of elasticities of all sets of lengths. This set was studied first by Chapman
et al. in a series of papers (see [6, 12, 7, 8]). Among others they showed that in an atomic monoid H ,
which has a prime element and an element a ∈ H with ρ(L(a)) = ρ(H), every rational number q with
1 ≤ q ≤ ρ(H) can be realized as the elasticity of some L ∈ L(H) ([6, Corollary 2.2]). Primary monoids,
which are not discrete valuation monoids, have no prime elements and their set of elasticities is different,
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as we will see in the next theorem. Statement 1. of Theorem 5.5 was proved for numerical monoids in
[12, Theorem 2.2].

Theorem 5.5. Let H be a strongly primary monoid that is not half-factorial.

1. There is a β ∈ Q>1 such that ρ(L) ≥ β for all L ∈ L(H) with ρ(L) 6= 1.

2. L(H) 6= L(G0) for any subset G0 of any abelian group. In particular, H is not a transfer Krull
monoid.

3. If one of the following two conditions

• sup{min L(c) | c ∈ H} < ∞, or

• There exists some u ∈ H \H× such that ρM(u)(H) < ∞,

holds, then H is locally tame. If H is locally tame, then ∆(H) is finite, and there is an M ∈ N0

such that every L ∈ L(H) is an AAMP with period {0,min∆(H)} and bound M .

Remark. If H is the multiplicative monoid of a one-dimensional local Mori domain R with nonzero

conductor (R : R̂) 6= {0}, then one of the conditions in 3. is satisfied (see [19, Proposition 2.10.7 and
Theorem 3.1.5]). However, there are strongly primary monoids for which none of the conditions holds
and which are not locally tame ([20, Proposition 3.7]).

Proof. 1. Let b ∈ H such that |L(b)| ≥ 2 and let u ∈ A(H). Since H is a strongly primary monoid, we
have (H \H×)M(b) ∈ bH and (H \H×)M(u) ∈ uH . Thus b |uM(b) and hence |L(uM(b))| ≥ 2. We define

β1 =
M(b) +M(u) + 1

M(b) +M(u)
, β2 =

max L(uM(b)) +M(b) +M(u)

min L(uM(b)) +M(b) +M(u)
,

and observe that β = min{β1, β2} > 1. Let a ∈ H with ρ(L(a)) 6= 1. We show that ρ(L(a)) ≥ β.
Let k ∈ N0 be maximal such that uk | a, say a = uku′ with u′ ∈ H . Thus u ∤ u′ and thus maxL(u′) <

M(u). If k < M(b), then min L(a) ≤ min L(uk) + min L(u′) ≤ M(b) +M(u), and hence

ρ(L(a)) =
maxL(a)

min L(a)
≥

min L(a) + 1

min L(a)
≥

M(b) +M(u) + 1

M(b) +M(u)
= β1 ≥ β .

If k ≥ M(b), then there exist t ∈ N and t0 ∈ [0,M(b)− 1] such that k = tM(b) + t0, and hence

ρ(L(a)) =
maxL(a)

min L(a)
≥

maxL(uk) + maxL(u′)

min L(uk) + min L(u′)
≥

tmaxL(uM(b)) + maxL(ut0) + maxL(u′)

tmin L(uM(b)) + min L(ut0) + min L(u′)

≥
tmaxL(uM(b)) + t0 +max L(u′)

tmin L(uM(b)) + t0 +max L(u′)
≥

tmaxL(uM(b)) +M(b) +M(u)

tmin L(uM(b)) +M(b) +M(u)
≥ β2 ≥ β .

2. Assume to the contrary that there are an abelian group G and a subset G0 ⊂ G such that
L(H) = L(G0). Since H is not half-factorial, G0 is not half-factorial. By 1., there exists β ∈ Q with
β > 1 such that ρ(L) ≥ β for every L ∈ L(H). Lemma 5.4.2 implies that there are zero-sum sequences
Bk ∈ B(G0) such that ρ(L(Bk)) → 1 as k → ∞, a contradiction.

3. This follows from [19, 3.1.1, 3.1.2, and 4.3.6]. �

Sets of lengths of numerical monoids have found wide attention in the literature (see, among others,
[9, 1, 13]). As can be seen from Theorem 5.5.3, the structure of their sets of lengths is simpler than the
structure of sets of lengths of transfer Krull monoids over finite abelian groups. Thus it is no surprise that
there are infinitely many non-isomorphic numerical monoids whose systems of sets of lengths coincide,
and that an analog of Conjecture 3.4 for numerical monoids does not hold true ([1]). It is open whether
for every d ∈ N and every M ∈ N0 there is a strongly primary monoid D such that every AAMP with
period {0, d} and bound M can (up to a shift) be realized as a set of lengths in D (this would be the
analog to the realization theorem given in Proposition 3.2.2). However, for every finite set L ⊂ N≥2 there
is a v-noetherian primary monoid D and an element a ∈ D such that L = L(a) ([20, Theorem 4.2]).
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By Theorem 3.6 and Proposition 3.2.3, we know that {k, k + 1} ∈ L(G) for every k ≥ 2 and every
abelian group G with |G| ≥ 3.

Theorem 5.6. Let D = D1 × . . . × Dn be the direct product of strongly primary monoids D1, . . . , Dn,
which are not half-factorial.

1. There is a k∗ ∈ N such that {k, k + 1} /∈ L(D) for all k ≥ k∗.

2. We have L(D) 6= L(G0) for any subset G0 of any abelian group, and hence D is not a transfer
Krull monoid. If D1, . . . , Dn are locally tame, then D satisfies the Structure Theorem for Sets of
Lengths.

Proof. For every i ∈ [1, n] we choose an element ai ∈ Di such that |L(ai)| > 1.

1. We set k∗ = 2(M(a1) + . . . +M(an)), and choose a k ∈ N with k ≥ k∗. Assume to the contrary
that there exists an element b = b1 · . . . · bn ∈ D such that L(b) = {k, k + 1}. Then there is an i ∈ [1, n]
such that min L(bi) ≥ 2M(ai). Then bi ∈ (Di \D

×
i )

min L(bi) ⊂ (Di \D
×
i )

2M(ai) ⊂ a2iDi. Thus there is a
ci ∈ Di such that a2i ci = bi. This implies that L(ai) + L(ai) + L(ci) ⊂ L(bi). Since |L(ai)| ≥ 2, we infer
that |L(bi)| ≥ 3 and hence |L(b)| ≥ 3, a contradiction.

2. Assume to the contrary that there is an abelian group G and a subset G0 ⊂ G such that L(D) =
L(G0). Since D is not half-factorial, G0 is not half-factorial. Thus, by Lemma 5.4.2, there are M ∈ N
and for every k ∈ N a zero-sum sequence Bk ∈ B(G0) such that |L(Bk)| ≤ M but min L(Bk) → ∞ as
k → ∞.

For every k ∈ N, let bk = bk,1 · . . . · bk,n ∈ D with bk,i ∈ Di for all i ∈ [1, n] such that L(bk) = L(Bk).
Since min L(Bk) → ∞ as k tends to ∞, there are k ∈ N and i ∈ [1, n] such that min L(bk,i) ≥ MM(ai).
This implies that

bk,i ∈ (Di \D
×
i )

min L(bk,i) ⊂ (Di \D
×
i )

MM(ai) ⊂ aMi Di .

Thus there is a ci ∈ Di such that aMi ci = bk,i which yields that

M ≥ |L(Bk)| = |L(bk)| ≥ |L(bk,i)| ≥ |L(ai) + . . .+ L(ai)| ≥ M + 1 ,

a contradiction.
If D1, . . . , Dn are locally tame, then D satisfies the Structure Theorem by Proposition 5.3.1. �

Theorem 5.7. Let D = F(P) ×D1 be the direct product of a free abelian monoid with nonempty basis
P and of a locally tame strongly primary monoid D1, and let G be an abelian group. Then D satisfies
the Structure Theorem for Sets of Lengths, and the following statements are equivalent :

(a) L(D) = L(G).

(b) One of the following cases holds :

(b1) |G| ≤ 2 and ρ(D) = 1.

(b2) G is isomorphic either to C3 or to C2 ⊕ C2, [2, 3] ∈ L(D), ρ(D) = 3/2, and ∆(D) = {1}.

(b3) G is isomorphic to C3 ⊕ C3, [2, 5] ∈ L(D), ρ(D) = 5/2, and ∆(D) = {1}.

Remark. Let H be a v-noetherian weakly Krull monoid. If the conductor (H : Ĥ) ∈ v-max(H), then by
Proposition 5.1, I∗

v (H) is isomorphic to a monoid D as given in Theorem 5.7.

Proof. Since P is nonempty, L(D) = {y + L | y ∈ N0, L ∈ L(D1)} whence ∆(D) = ∆(D1) and ρ(D) =
ρ(D1). In particular, D is half-factorial if and only if D1 is half-factorial. Since D1 satisfies the Structure
Theorem of Sets of Lengths by Theorem 5.5.3, the same is true for D.

If D is half-factorial and L(D) = L(G), then ρ(D) = ρ(D1) = 1 and G is half-factorial whence
|G| ≤ 2 by Proposition 3.3. Conversely, if |G| ≤ 2 and ρ(D) = 1, then G and D are half-factorial and
L(G) = L(D).
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Thus from now on we suppose that D1 is not half-factorial and that (b1) does not hold. Then ∆(D) 6= ∅
and we set min∆(D) = d.

(a) ⇒ (b) Theorem 5.5.3 and Proposition 3.2.3 imply that G is finite. Since G is not half-factorial, it
follows that |G| ≥ 3. Theorem 5.5.3 shows that ∆1(D) = {d}, and since 1 ∈ ∆1(G) = ∆1(D), we infer
that d = 1. Corollary 4.3.16 in [19] and [26, Theorem 1.1] imply that

max{exp(G)− 2, r(G) − 1} = max∆1(G) = max∆1(D) = 1 .

Therefore G is isomorphic to one of the following groups: C2 ⊕ C2, C3, C3 ⊕ C3. We distinguish two
cases.

CASE 1: G is isomorphic to C2 ⊕ C2 or to C3.
By Proposition 3.3, we have

L(D) = L(C2 ⊕ C2) = L(C3) = {y + 2k + [0, k] | y, k ∈ N0} .

In particular, we have 3/2 = ρ(G) = ρ(D) and {1} = ∆(G) = ∆(D).

CASE 2: G is isomorphic to C3 ⊕ C3.
By Theorem 4.1, just using different notation, we have

L(D) = L(C2
3 ) = {[2k, ℓ] | k ∈ N0, ℓ ∈ [2k, 5k]}

∪ {[2k + 1, ℓ] | k ∈ N, ℓ ∈ [2k + 1, 5k + 2]} ∪ {{1}} .

In particular, we have 5/2 = ρ(G) = ρ(D) and {1} = ∆(G) = ∆(D).

(b) ⇒ (a) First suppose that Case (b2) holds. We show that

L(D) =
{
y + 2k + [0, k]

∣∣ y, k ∈ N0

}
.

Then L(D) = L(G) by Proposition 3.3. Since ρ(D) = 3/2 and ∆(D) = {1}, it follows that L(D)
is contained in the above family of sets. Thus we have to verify that for every y, k ∈ N0, the set
y+ [2k, 3k] ∈ L(D). Since P is nonempty, D contains a prime element and hence it suffices to show that
[2k, 3k] ∈ L(H) for all k ∈ N. Let a ∈ D with L(a) = {2, 3}, and let k ∈ N. Then min L(ak) ≤ 2k and
max L(ak) ≥ 3k. Since ρ(L(ak)) ≤ ρ(D) = 3/2, it follows that min L(ak) = 2k and maxL(ak) = 3k. Since
∆(D) = {1}, we finally obtain that L(ak) = [2k, 3k].

Now suppose that Case (b3) holds. We show that

L(D) = {[2k, ℓ] | k ∈ N0, ℓ ∈ [2k, 5k]} ∪ {[2k + 1, ℓ] | k ∈ N, ℓ ∈ [2k + 1, 5k + 2]} ∪ {{1}} .

Then L(D) = L(G) by Theorem 4.1. Since ρ(D) = 5/2 and ∆(D) = {1}, it follows that L(D) is contained
in the above family of sets. Now the proof runs along the same lines as the proof in Case (b2). �

We show that the Cases (b2) and (b3) in Theorem 5.7 can actually occur. Recall that numerical
monoids are locally tame and strongly primary. Let D1 be a numerical monoid distinct from (N0,+),
say A(D1) = {n1, . . . , nt} where t ∈ N≥2 and 1 < n1 < . . . < nt. Then, by [12, Theorem 2.1] and [9,
Proposition 2.9],

ρ(D1) =
nt

n1
and min∆(D1) = gcd(n2 − n1, . . . , nt − nt−1) .

Suppose that ρ(D1) = m/2 with m ∈ {3, 5} and ∆(D1) = {1}. Then there is an a ∈ D1 with L(a) =
[2,m] ∈ L(D1). Clearly, there are non-isomorphic numerical monoids with elasticity m/2 and set of
distances equal to {1}.

Theorem 5.8. Let R be a v-noetherian weakly Krull domain with conductor {0} ( f = (R :R̂) ( R, and

let π : X(R̂) → X(R) be the natural map defined by π(P) = P ∩R for all P ∈ X(R̂).

1. (a) I∗
v (H) is locally tame with finite set of distances, and it satisfies the Structure Theorem for

Sets of Lengths.
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(b) If π is not bijective, then L
(
I∗
v (H)

)
6= L(G0) for any finite subset G0 of any abelian group

and for any subset G0 of an infinite cyclic group. In particular, I∗
v (H) is not a transfer Krull

monoid of finite type.

(c) If R is seminormal, then the following statements are equivalent :
(i) π is bijective.
(ii) I∗

v (H) is a transfer Krull monoid of finite type.
(iii) I∗

v (H) is half-factorial.

2. Suppose that the class group Cv(R) is finite.

(a) The monoid R• of nonzero elements of R is locally tame with finite set of distances, and it
satisfies the Structure Theorem for Sets of Lengths.

(b) If π is not bijective, then L(R•) 6= L(G0) for any finite subset G0 of any abelian group and
for any subset G0 of an infinite cyclic group. In particular, R is not a transfer Krull domain
of finite type.

(c) If π is bijective, R is seminormal, every class of Cv(R) contains a p ∈ X(R) with p 6⊃ f, and

the natural epimorphism δ : Cv(R) → Cv(R̂) is an isomorphism, then there is a weak transfer
homomorphism θ : R• → B(Cv(R)). In particular, R is a transfer Krull domain of finite type.

Proof. Since f 6= R, it follows that R 6= R̂ and that R is not a Krull domain. We use the structural
description of I∗

v (H) as given in Proposition 5.1.

1.(a) and 2.(a) Both monoids, R• and I∗
v (H), are locally tame with finite set of distances by [19,

Theorem 3.7.1]. Furthermore, they both satisfy the Structure Theorem for Sets of Lengths by Proposition
5.3 (use Propositions 5.1 and 5.2).

1.(b) and 2.(b) Suppose that π is not bijective. Then ρ
(
I∗
v (H)

)
= ρ(R•) = ∞ by [19, Theorems

3.1.5 and 3.7.1]. Let G0 be a finite subset of an abelian group G. Then B(G0) is finitely generated, the
Davenport constant D(G0) is finite whence the set of distances ∆(G0) and the elasticity ρ(G0) are both
finite (see [19, Theorems 3.4.2 and 3.4.11]). Thus L

(
I∗
v (H)

)
6= L(G0) and L(R•) 6= L(G0). If G0 is a

subset of an infinite cyclic group, then the set of distances is finite if and only if the elasticity is finite by
[17, Theorem 4.2], and hence the assertion follows again.

1.(c) Suppose that R is seminormal. By 1.(b) and since half-factorial monoids are transfer Krull
monoids of finite type, it remains to show that π is bijective if and only if I∗

v (H) is half-factorial. Since
R is seminormal, all localizations Rp with p ∈ X(H) are seminormal. Thus I∗

v (H) is isomorphic to a
monoid of the form F(P)×D1×. . .×Dn, where n ∈ N and D1, . . . , Dn are seminormal finitely primary
monoids, and this monoid is half-factorial if and only if each monoid D1, . . . , Dn is half-factorial. By [21,
Lemma 3.6], Di is half-factorial if and only if it has rank one for each i ∈ [1, n], and this is equivalent to
π being bijective (see [19, Theorem 3.7.1]).

2.(c) This follows from [21, Theorem 5.8]. �

Note that every order R in an algebraic number field is a v-noetherian weakly Krull domain with
finite class group Cv(R) such that every class contains a p ∈ X(R) with p 6⊃ f. If R is a v-noetherian
weakly Krull domain as above, then Theorems 5.5, 5.6, and 5.7 provide further instances of when R is
not a transfer Krull domain, but a characterization of the general case remains open. We formulate the
following problem (see also [15, Problem 4.7]).

Problem 5.9. Let H be a v-noetherian weakly Krull monoid with nonempty conductor (H :Ĥ) and finite
class group Cv(H). Characterize when H and when the monoid I∗

v (H) are transfer Krull monoids resp.
transfer Krull monoids of finite type.
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