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THE CATENARY DEGREE OF KRULL MONOIDS II

ALFRED GEROLDINGER AND QINGHAI ZHONG

Abstract. Let H be a Krull monoid with finite class group G such that every class contains a prime
divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic
function field). The catenary degree c(H) of H is the smallest integer N with the following property:
for each a ∈ H and each two factorizations z, z′ of a, there exist factorizations z = z0, . . . , zk = z′ of a
such that, for each i ∈ [1, k], zi arises from zi−1 by replacing at most N atoms from zi−1 by at most N
new atoms. To exclude trivial cases, suppose that |G| ≥ 3. Then the catenary degree depends only on
the class group G and we have c(H) ∈ [3,D(G)], where D(G) denotes the Davenport constant of G. It
is well-known when c(H) ∈ {3, 4,D(G)} holds true. Based on a characterization of the catenary degree
determined in the first paper [17], we determine the class groups satisfying c(H) = D(G)− 1. Apart from
the mentioned extremal cases the precise value of c(H) is known for no further class groups.

1. Introduction and Main Results

As the title indicates, we continue the investigation of the arithmetic of Krull monoids. All integrally
closed noetherian domains are Krull, and holomorphy rings in global fields are Krull monoids with finite
class group and infinitely many prime ideals in each class. A Krull monoid is factorial if and only if its
class group is trivial, and if this is not the case, then its arithmetic is described by invariants, such as sets
of lengths and catenary degrees. We recall some basic definitions.

Let H be a Krull monoid with class group G. Then each non-unit a ∈ H can be written as a product of
atoms, and if a = u1 ·. . .·uk with atoms u1, . . . , uk ofH , then k is called the length of the factorization. The
set of lengths L(a) of all possible factorization lengths is finite, and if |L(a)| > 1, then |L(an)| > n for each
n ∈ N. We denote by L(H) = {L(a) | a ∈ H} the system of sets of lengths of H . This is an infinite family
of finite subsets of positive non-negative integers which is described by a variety of arithmetical parameters.
The present paper will focus on the three closely related invariants, namely the set of distances, the k(H)
invariant, and the catenary degree. If L = {m1, . . . ,ml} ⊂ Z is a finite set of integers with l ∈ N and
m1 < . . . < ml, then ∆(L) = {mi −mi−1 | i ∈ [2, l]} ⊂ N is the set of distances of L. The set of distances
∆(H) of H is the union of all sets ∆(L) with L ∈ L(H). If

k(H) = sup{min(L \ {2}) | 2 ∈ L ∈ L(H)} ,

then k(H) ≤ 2 + sup∆(H). The catenary degree c(H) of H is defined as the smallest integer N with the
following property: for each a ∈ H and each two factorizations z and z′ of a, there exist factorizations
z = z0, . . . , zk = z′ of a such that, for each i ∈ [1, k], zi arises from zi−1 by replacing at most N atoms
from zi−1 by at most N new atoms. A simple argument shows that H is factorial if and only if c(H) = 0,
and if this is not the case, then 2 + sup∆(H) ≤ c(H).

The study of these arithmetical invariants (in settings ranging from numerical monoids to Mori rings with
zero-divisors) has attracted a lot of attention in the recent literature (for a sample see [9, 8, 23, 13, 24, 7, 10]).
Our main focus here will be on Krull monoids with finite class group G such that each class contains a
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2 ALFRED GEROLDINGER AND QINGHAI ZHONG

prime divisor. Let H be such a Krull monoid. Then |L| = 1 for all L ∈ L(H) if and only if |G| ≤ 2.
Suppose that |G| ≥ 3. Then the Davenport constant D(G) is finite, k(H) ≥ 3, and there is a canonical
chain of inequalities

(∗) k(H) ≤ 2 + max∆(H) ≤ c(H) ≤ D(G) .

In general, each inequality can be strict (see [17, page 146]). However, for the Krull monoids under
consideration the main result in [17] states that k(H) = c(H) holds under a certain mild assumption on
the Davenport constant. Our starting point is the following Theorem A (the first statement follows from
[18, Theorem 6.4.7], and the characterization of c(H) ∈ [3, 4] is given in [17, Corollary 5.6]).

Theorem A. Let H be a Krull monoid with finite class group G where |G| ≥ 3 and each class contains a

prime divisor. Then c(H) ∈ [3,D(G)], and we have

1. c(H) = D(G) if and only if G is either cyclic or an elementary 2-group.

2. c(H) = 3 if and only if G is isomorphic to one of the following groups : C3, C2 ⊕ C2, or C3 ⊕ C3.

3. c(H) = 4 if and only if G is isomorphic to one of the following groups : C4, C2 ⊕ C4, C2 ⊕ C2 ⊕
C2, or C3 ⊕ C3 ⊕ C3.

We formulate a main result of the present paper.

Theorem 1.1. Let H be a Krull monoid with finite class group G where |G| ≥ 3 and each class contains

a prime divisor. Then the following statements are equivalent :

(a) c(H) = D(G)− 1.

(b) k(H) = D(G)− 1.

(c) G is isomorphic either to Cr−1
2 ⊕ C4 for some r ≥ 2 or to C2 ⊕ C2n for some n ≥ 2.

In order to discuss the statements of Theorem 1.1 and their consequences, let H be a Krull monoid as
in Theorem 1.1. Then the inequalities in (∗) and the fact that ∆(H) is an interval with 1 ∈ ∆(H) ([19])
imply that any of the following two conditions,

max∆(H) = D(G)− 3 or ∆(H) = [1,D(G)− 3]

is equivalent to the conditions in Theorem 1.1. The precise value of the Davenport constant is known for
p-groups, for groups of rank at most two, and for some others. Thus we do know that D(Cr−1

2 ⊕C4) = r+3
and that D(C2 ⊕C2n) = 2n+1. But the value of D(G) is unknown for general groups of rank three or for
groups of the form G = Cr

n. Even much less is known for the catenary degree c(H) and for k(H). Their
precise values are known only for the cases occurring in Theorem A and in Theorem 1.1.

As mentioned at the very beginning, holomorphy rings in global fields are (commutative) Krull monoids
with finite class group. In recent years factorization theory has grown towards the non-commutative setting
(e.g., [3, 1]) with a focus on maximal orders in central simple algebras (they are non-commutative Krull
monoids; see [31, 4]). Combining these results with Theorem 1.1 above, we obtain the following corollary.

Corollary 1.2. Let O be a holomorphy ring in a global field K, and R a classical maximal O-order in a

central simple algebra A over K such that every stably free left R-ideal is free. Suppose that the ray class

group G = CA(O) of O has at least three elements, let d denote a (suitable) distance on R, and cd(R) the
d-catenary degree of R. Then the following statements are equivalent :

(a) cd(R) = D(G) − 1.

(b) k(R) = D(G)− 1.

(c) G is isomorphic either to Cr−1
2 ⊕ C4 for some r ≥ 2 or to C2 ⊕ C2n for some n ≥ 2.
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Sets of lengths are the most investigated invariants in factorization theory. A standing (but wide open)
conjecture states that for the class of Krull monoids under consideration sets of lengths are characteristic.
To be more precise, let H and H ′ be Krull monoids with finite class groups G and G′ with |G| ≥ |G′| ≥ 4
and suppose that each class contains a prime divisor. As usual, we write L(G) = L(H) and L(H ′) = L(G′)
(see Proposition 2.1). Then the conjecture states that L(G) = L(G′) implies that G and G′ are isomorphic.
For recent work in this direction we refer to [27, 28, 6] or to [18, Section 7.3], [14] for an overview. It turns
out the extremal values of k(H) discussed in Theorem 1.1 are the main tool to derive an arithmetical
characterization of the associated groups. Thus we obtain the following corollary.

Corollary 1.3. Let G be an abelian group.

1. If L(G) = L(Cr−1
2 ⊕ C4) for some r ≥ 2, then G ∼= Cr−1

2 ⊕ C4.

2. If L(G) = L(C2 ⊕ C2n) for some n ≥ 2, then G ∼= C2 ⊕ C2n.

In Section 2 we gather together the required concepts and tools. Section 3 studies sets of lengths
in monoids of zero-sum sequences over finite abelian groups, and it is mainly confronted with problems
belonging to structural (or inverse) additive number theory. Clearly, the irreducible elements of the
monoids are precisely the minimal zero-sum sequences, and we mainly have to deal with minimal zero-sum
sequences of extremal length D(G). The structure of minimal zero-sum sequences of length D(G) is known
for cyclic groups and elementary 2-groups (in both cases there are trivial answers), and for groups of rank
two ([12, 29, 25]). Apart from that, structural results are available only in very special cases ([30, 26]),
and this is precisely the lack of information which causes the difficulties in Section 3 (see Prop. 3.5 - 3.8).
The proofs of the main results are given in Section 4. They substantially use transfer results (as partly
summarized in Proposition 2.1, and also the transfer machinery from [31, 4]), the work from [17] (which
relates the catenary degree and the k(·) invariant of Krull monoids), and all the work from Section 3.

2. Preliminaries

We denote by N the set of positive integers and by N0 the set of non-negative integers. For n ∈ N, Cn

means a cyclic group of order n. For integers a, b ∈ Z, [a, b] = {x ∈ Z | a ≤ x ≤ b} is the discrete interval
between a and b. Let A,B ⊂ Z be subsets. Then A+B = {a+ b | a ∈ A, b ∈ B} denotes their sumset. If
A = {a1, . . . , al} is finite with |A| = l ∈ N0 and a1 < . . . < al, then ∆(A) = {ai − ai−1 | i ∈ [2, l]} ⊂ N is
the set of distances of A. By definition, ∆(A) = ∅ if and only if |A| ≤ 1.

By a monoid, we always mean a commutative semigroup with identity which satisfies the cancellation
law (that is, if a, b, c are elements of the monoid with ab = ac, then b = c follows). Let H be a monoid.
Then H× denotes the unit group, q(H) the quotient group, Hred = H/H× the associated reduced monoid,
and A(H) the set of atoms of H . A monoid F is factorial with F× = {1} if and only if it is free abelian.
If this holds, then the set of primes P ⊂ F is a basis of F , we write F = F(P ), and every a ∈ F has a
representation of the form

a =
∏

p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P .

If a ∈ F , then |a| =
∑

p∈P vp(a) ∈ N0 is the length of a and supp(a) = {p ∈ P | vp(a) > 0} ⊂ P is the
support of a.

Let G be an additively written abelian group and G0 ⊂ G a subset. Then 〈G0〉 ⊂ G denotes the
subgroup generated by G0. A family (ei)i∈I of elements of G is said to be independent if ei 6= 0 for all
i ∈ I and, for every family (mi)i∈I ∈ Z(I),

∑

i∈I

miei = 0 implies miei = 0 for all i ∈ I .

The family (ei)i∈I is called a basis for G if G =
⊕

i∈I〈ei〉.
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Arithmetical concepts. Our notation and terminology are consistent with [18]. We briefly gather
some key notions. The free abelian monoid Z(H) = F(A(Hred)) is the factorization monoid of H , and
the unique homomorphism π : Z(H) → Hred satisfying π(u) = u for all u ∈ A(Hred) is the factorization
homomorphism of H (so π maps a formal product of atoms onto its product in Hred). For a ∈ H ,

ZH(a) = Z(a) = π−1(a) ⊂ Z(H) is the set of factorizations of a, and

LH(a) = L(a) = {|z| | z ∈ Z(a)} is the set of lengths of a .

Then H is atomic (i.e., each non-unit can be written as a finite product of atoms) if and only if Z(a) 6= ∅
for each a ∈ H , and H is factorial if and only if |Z(a)| = 1 for each a ∈ H . Furthermore, for each
a ∈ H , L(a) = {0} if and only if a ∈ H×, and for all non-units the present definition coincides with the
informal one given in the introduction. In particular, L(a) = {1} if and only if a ∈ A(H). We denote by
L(H) = {L(a) | a ∈ H} the system of sets of lengths of H , and by

∆(H) =
⋃

L∈L(H)

∆(L) the set of distances of H .

Distances occurring in sets of lengths L with 2 ∈ L (in other words, in sets of lengths L(uv) with atoms
u, v ∈ H) will play a central role. We define

k(H) = sup{min(L \ {2}) | L ∈ L(H) with 2 ∈ L}

and observe that k(H) ≤ 2 + sup∆(H). Before we define catenary degrees we recall the concept of the
distance between factorizations. Two factorizations z, z′ ∈ Z(H) can be written in the form

z = u1 · . . . · ulv1 · . . . · vm and z′ = u1 · . . . · ulw1 · . . . · wn

with
{v1, . . . , vm} ∩ {w1, . . . , wn} = ∅,

where l, m, n ∈ N0 and u1, . . . , ul, v1, . . . , vm, w1, . . . , wn ∈ A(Hred). Then gcd(z, z′) = u1 · . . . · ul, and
we call d(z, z′) = max{m, n} = max{|z gcd(z, z′)−1|, |z′ gcd(z, z′)−1|} ∈ N0 the distance between z and z′.
It is easy to verify that d : Z(H)× Z(H) → N0 has all the usual properties of a metric.

Let a ∈ H and N ∈ N0∪{∞}. A finite sequence z0, . . . , zk ∈ Z(a) is called an N -chain of factorizations

if d(zi−1, zi) ≤ N for all i ∈ [1, k]. We denote by c(a) the smallest N ∈ N0 ∪ {∞} such that any two
factorizations z, z′ ∈ Z(a) can be concatenated by an N -chain. Note that c(a) ≤ supL(a), that c(a) = 0 if
and only if |Z(a)| = 1, and if |Z(a)| > 1, then 2 + sup∆(L(a)) ≤ c(a). Globalizing this concept we define

c(H) = sup{c(b) | b ∈ H} ∈ N0 ∪ {∞}

as the catenary degree of H . Then c(H) = 0 if and only if H is factorial, and if H is not factorial, then
2 + sup∆(H) ≤ c(H).

Krull monoids. A monoid homomorphism ϕ : H → F is said to be a divisor homomorphism if ϕ(a) |ϕ(b)
in F implies that a | b in H for all a, b ∈ H . A monoid H is said to be a Krull monoid if one of the following
equivalent properties is satisfied (see [18, Theorem 2.4.8] or [21]):

(a) H is completely integrally closed and satisfies the ascending chain condition on divisorial ideals.
(b) H has a divisor homomorphism into a free abelian monoid.
(c) H has a divisor theory: this is a divisor homomorphism ϕ : H → F = F(P ) into a free abelian

monoid such that for each p ∈ P there is a finite set E ⊂ H with p = gcd
(
ϕ(E)

)
.

Let H be a Krull monoid. Then a divisor theory is unique up to unique isomorphism and the group
C(ϕ) = q(F )/q(ϕ(H)) depends only on H , and hence it is called the class group of H . We say that a class
g = [a] = aq(ϕ(H)) ⊂ q(F ) ∈ C(ϕ), with a ∈ q(F ), contains a prime divisor if g ∩ P 6= ∅. A domain R is
Krull if and only if its multiplicative monoid R• = R \ {0} of non-zero elements is Krull. Thus Property
(a) shows that every integrally closed noetherian domain is Krull. If R is Krull with finite class group
such that each class contains a prime divisor, then the same is true for regular congruence submonoids of
R ([18, Section 2.11]). For monoids of modules which are Krull we refer the reader to [5, 2, 11].
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Next we discuss a Krull monoid having a combinatorial flavor. It plays a universal role in all arithmetical
studies of general Krull monoids. Let G be an additive abelian group and G0 ⊂ G a subset. According to
the tradition in combinatorial number theory, elements S ∈ F(G0) will be called sequences over G0 (for a
recent presentation of their theory we refer to [20], and for an overview of their interplay with factorization
theory we refer to [14]). Let S = g1 · . . . · gl =

∏
g∈G0

gvg(S) ∈ F(G0) be a sequence over G0. Then

σ(S) = g1 + . . .+ gl ∈ G is the sum of S and

Σ(S) =
{∑

i∈I

gi | ∅ 6= I ⊂ [1, l]
}
=

{
σ(T ) | T is a subsequence of S

}
⊂ G

denotes the set of subsums of S. We say that S is zero-sum free if 0 /∈ Σ(S) and that S is a zero-sum
sequence if σ(S) = 0. Obviously, S is zero-sum free or a (minimal) zero-sum sequence if and only if
−S = (−g1) · . . . · (−gl) has this property. The set

B(G0) = {S ∈ F(G0) | σ(S) = 0} ⊂ F(G0)

of all zero-sum sequences overG0 is a submonoid of F(G0), and since the embedding B(G0) →֒ F(G0) obvi-
ously is a divisor homomorphism, Property (b) shows that B(G0) is a Krull monoid. For each arithmetical
invariant ∗(H) defined for a monoid H , we write ∗(G0) instead of ∗(B(G0)). This is the usual convention
and will hardly lead to misunderstandings. In particular, we set L(G0) = L(B(G0)), k(G0) = k(B(G0)),
and ∆(G0) = ∆(B(G0)). The set A(G0) = A(B(G0)) of atoms of B(G0) is the set of minimal zero-sum
sequences over G0 and

D(G0) = sup{|A| | A ∈ A(G0)} ∈ N ∪ {∞}

is the Davenport constant of G0. If G0 is finite, then A(G0) is finite and hence D(G0) < ∞.
Suppose that G is finite abelian, say G ∼= Cn1

⊕ . . .⊕Cnr
with 1 < n1 | . . . |nr. Then 1+

∑r

i=1(ni−1) ≤
D(G). We will use without further mention that equality holds for p-groups and for groups of rank r ≤ 2
([18, Chapter 5]). Furthermore, we will frequently use that, if exp(G) + 1 = nr + 1 = D(G), then r = 2
and G ∼= C2 ⊕ Cn2

. If S ∈ F(G) is zero-sum free of length |S| = D(G) − 1, then Σ(S) = G \ {0}, and if
S ∈ A(G) with |S| = D(G), then Σ(S) = G (see [18, Proposition 5.1.4]).

Suppose that |G| ≥ 3. Then B(G) is a Krull monoid whose class group is isomorphic to G and each
class contains precisely one prime divisor ([18, Proposition 2.5.6]). Furthermore, its arithmetic reflects the
arithmetic of more general Krull monoids as it is summarized in the next proposition (for a proof see [18,
Section 3.4]).

Proposition 2.1. Let H be a Krull monoid, ϕ : H → F = F(P ) a divisor theory, G = C(ϕ) the class

group, and suppose that each class contains a prime divisor. Let β̃ : F(P ) → F(G) denote the unique

homomorphism satisfying β̃(p) = [p] for each p ∈ P , and let β = β̃ ◦ ϕ : H → B(G).

1. For each a ∈ H, we have LH(a) = LB(G)(β(a)). In particular, L(H) = L(G), ∆(H) = ∆(G), and
k(H) = k(G).

2. We have |G| ≤ 2 if and only if D(G) ≤ 2 if and only if |L| = 1 for all L ∈ L(G).

3. If |G| ≥ 3, then c(H) = c(G).

3. On sets of lengths L ∈ L(G) having extremal properties

In this section we mainly study sets of lengths of zero-sum sequences over finite abelian groups. We
start by recalling two results from [17].

Lemma 3.1. Let G be a finite abelian group with |G| ≥ 3, say G = Cn1
⊕ . . .⊕Cnr

with 1 < n1 | . . . |nr.

1. c(G) ≤ max
{⌊

1
2D(G) + 1

⌋
, k(G)

}
.

2. k(G) ≥ max{nr, 1 +
∑r

i=1⌊
ni

2 ⌋}.
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Proof. See Proposition 4.1 and Theorem 4.2 in [17]. �

Lemma 3.2. Let G be an abelian group with |G| ≥ 3, and let U, V ∈ A(G) with maxL(UV ) ≥ 3.

1. Let K ⊂ G be a finite cyclic subgroup. If
∑

h∈K vh(UV ) > |K| and there exists a non-zero g ∈ K
such that vg(U) > 0 and v−g(V ) > 0, then L(UV ) ∩ [3, |K|] 6= ∅.

2. If L(UV ) ∩ [3, ord(g)] = ∅, then for any g ∈ G, we have vg(U) + v−g(V ) ≤ ord(g).

Proof. 1. See Lemma 5.2 in [17].

2. This follows from 1. with K = 〈g〉. �

Let A be a zero-sum sequence over a finite abelian group G and suppose that 0 ∤ A. If

A = U1 · . . . · Uk = V1 · . . . · Vl ,

where k, l ∈ N and U1, . . . , Uk, V1, . . . , Vl ∈ A(G), then obviously

2l ≤
l∑

i=1

|Vi| = |A| =
k∑

i=1

|Ui| ≤ kD(G) .

These inequalities will be used implicitly in many of the forthcoming arguments.

Lemma 3.3. Let G = C4 ⊕ C4. Then k(G) = c(G) = 5. Moreover, if U, V ∈ A(G) with L(UV ) ∩ [2, 5] =
{2, 5}, then 〈supp(UV )〉 = G.

Proof. First, we prove the moreover statement. Let U, V ∈ A(G) with L(UV ) ∩ [2, 5] = {2, 5}. Then
k
(
〈supp(UV )〉

)
≥ 5. Since for every proper subgroup K of G we have k(K) ≤ k(C2 ⊕C4) < D(G) = 5 by

Theorem A, it follows that 〈supp(UV )〉 = G.
Recall that D(G) = 7, and note that it suffices to prove k(G) ≤ 5, since then combing with [17,

Proposition 4.1.2 and Corollary 4.3] yields 5 ≤ k(G) = c(G) ≤ 5.
Let U, V ∈ A(G) with maxL(UV ) > 5 be given. Since max L(UV ) ≤ min{|U |, |V |} ≤ D(G) = 7, it

follows that min{|U |, |V |} ∈ {6, 7}. We have to show that there exists a factorization UV = W1 · . . . ·Wk

with W1, . . . ,Wk ∈ A(G) and k ∈ [3, 5]. We start with two special cases.
First, suppose that V = −U and |U | = 7. Then [18, Theorem 6.6.7] implies that 4 ∈ L(UV ), and thus

the assertion follows.
Second, suppose that there exist W1,W2 ∈ A(G) such that W1W2 |UV , 5 ≥ |W1| ≥ |W2|, and |W1W2| ≥

7. Then there exist k ∈ N≥3, W3, . . . ,Wk ∈ A(G) such that UV = W1 · . . . ·Wk, and

2(k − 2) ≤ |W3 · . . . ·Wk| = |UV | − |W1W2| ≤ 14− 7 = 7

implies k ≤ 5, and the assertion follows.
Assume to the contrary that UV has no factorization of length k ∈ [3, 5]. Then none of the two special

cases holds true. By [16, Lemma 3.6], UV has a zero-sum subsequence W1 ∈ A(G) of length |W1| ∈ [2, 4],
and suppose that |W1| is maximal. Then there is a factorization

UV = W1 · . . . ·Wk with k ≥ 3 and W1, . . . ,Wk ∈ A(G) .

By assumption we have k ≥ 6. Since k = 7 would imply that V = −U and |U | = 7, it follows that k = 6.
We distinguish three cases.

CASE 1: |W1| = 2.
Since |W1| is maximal, we get |W1| = . . . = |Wk| = 2, and thus |UV | ∈ {12, 14} and V = −U . Since we

are not in the first special case, it follows that |U | = 6, say U = g1 · . . . · g6.
If h(U) = 3, say g1 = g2 = g3, then W = (−g1)g4g5g6 ∈ A(G) with W |UV , a contradiction. Thus

h(U) ≤ 2. Since D(C2
2 ) = 3, supp(U) contains at most two elements of order 2, say ord(g1) = . . . =

ord(g4) = 4. Since D(C2 ⊕ C4) = 5, it follows that supp(U) generates G. Recall that the maximal size of
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a minimal generating set of G equals r∗(G) = 2, and that every generating set contains a basis (see [18,
Appendix A]). Thus the elements of order 4 contain a basis.

Suppose there are two elements with multiplicity two, say g1 = g3 and g2 = g4. Then (g1, g2) is a basis
of G and g5 = ag1 + bg2 with a, b ∈ [1, 3]. Thus there is a zero-sum subsequence W ∈ A(G) with |W | > 2,
W |UV and supp(W ) ∈ {g5, g1, g2,−g1,−g2}, a contradiction.

Suppose there is precisely one element with multiplicity two, say g1 = g3. Then (g1, g2) is a basis of
G and there is an element in supp(U) of the form ag1 + bg2 with a ∈ [1, 3] and b ∈ {1, 3}. As above we
obtain a zero-sum sequence W with |W | > 2, a contradiction.

Suppose that h(U) = 1. Then (g1, g2) is a basis of G. Then there is one element in supp(U) which is
not of the form {g1 + 2g2, 2g1 + g2, 2g1 + 2g2}, and hence it has the form ag1 + bg2 with a, b ∈ {1, 3}, and
we obtain a contradiction as above. �

CASE 2: |W1| = 4.
Since k = 6, |UV | ≤ 14 and |W1| = 4, we get |W2| = . . . = |W6| = 2 and |U | = |V | = 7. By [18,

Example 5.8.8], there exists a basis (e1, e2) of G such that

U = e31

4∏

ν=1

(aνe1 + e2)

with a1, a2, a3, a4 ∈ [0, 3] and a1 + a2 + a3 + a4 ≡ 1 mod 4. We set X = gcd(W1, U). Then there are
X,Y, Z ∈ F(G) such that U = XZ, V = Y (−Z) and W1 = XY . After renumbering if necessary there are
the following three cases:

X = e21, X = e1(a1e1 + e2) or X = (a1e1 + e2)(a2e1 + e2) .

If X = e21, then (−e1)(a1e1 + e2) · . . . · (a4e1 + e2) is a minimal zero-sum subsequence of UV of length 5, a
contradiction.

Suppose that X = (a1e1 + e2)(a2e1 + e2). If a3 6= a4, then (a3e1 + e2)(−a4e1 − e2)e
3
1 has a zero-sum

subsequence of length 4 or 5, a contradiction. Suppose that a3 = a4. Then (e1, a3e1 + e2) is a basis, and
after changing notation if necessary we may suppose that a3 = 0. Then (a1e1 + e2)(a2e1 + e2) ∈ {e1(e1 +
e2), (2e1 + e2)(−e1 + e2)}. In the first case e31(e1 + e2)(−e2) and in the second case (−e1)

3(−e1 + e2)(−e2)
is a zero-sum subsequence of UV of length 5, a contradiction.

Suppose that X = e1(a1e1 + e2). If two of the a2, a3, a4 are distinct, say a2 6= a3, then (a2e1 +
e2)(−a3e1− e− 2)e21(−e1)

2 has a zero-sum subsequence of length greater than 2, a contradiction. Suppose

that a2 = a3 = a4. Then (e1, e
′
2 = a2e1 + e2) is a basis. Then U = e31(e1 + e′2)e

′
2
3
and e31(e1 + e′2)(−e′2) is

a minimal zero-sum subsequence of UV of length 5, a contradiction.

CASE 3: |W1| = 3.
After renumbering if necessary we may suppose that |U | = 7, |V | ∈ {6, 7}, |W2| ∈ {2, 3} and |W3| =

. . . = |W6| = 2. By [18, Example 5.8.8], there exists a basis (e1, e2) of G such that

U = e31

4∏

ν=1

(aνe1 + e2)

with a1, a2, a3, a4 ∈ [0, 3] and a1 + a2+ a3 + a4 ≡ 1 mod 4. Thus U has a subsequence S of length |S| = 4
such that −S is a subsequence of V .

Suppose there are two distinct elements in {a1e1 + e2, . . . , a4e1 + e2}, say (a1e1 + e2) and (a2e1 + e2)
such that (a1e1 + e2)(a2e1 + e2) |S. Then either (a1e1 + e2)(−a2e1 − e2)e

3
1 or (−a1e1 − e2)(a2e1 + e2)e

3
1

contains a zero-sum subsequence of length 4 or 5, a contradiction.
Now we suppose that this does not hold and distinguish three cases.
Suppose S = e1(a1e1 + e2)(a2e1 + e2)(a3e1 + e2). Then a1 = a2 = a3 = a, and since (e1, ae1 + e2) is

a basis of G, we may suppose that a = 0. Then U = e31e
3
2(e1 + e2) and (−e1)e

3
2(e1 + e2) is a zero-sum

subsequence of UV of length 5, a contradiction.
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Suppose S = e21(a1e1 + e2)(a2e1 + e2). Then a1 = a2, and since (e1, ae1 + e2) is a basis of G, we
may suppose that a = 0. Then U = e31e

2
2(ae1 + e2)

(
(1 − a)e1 + e2

)
, and either (−e2)e

3
1(ae1 + e2) or

(−e2)e
3
1

(
(1− a)e1 + e2

)
has a zero-sum subsequence of length greater than or equal to 4, a contradiction.

Suppose S = e31(a1e1 + e2). Again we may suppose that a = 0 and find a zero-sum subsequence of UV
of length greater than or equal to 4, a contradiction. �

Lemma 3.4. Let G be a finite abelian group with |G| ≥ 3 and U ∈ A(G) with |U | = D(G).

1. If g1, g2, h ∈ supp(U), then g1 6= 2g2, and if ord(h) = 2, then g1 6= 2g2 + h.

2. Let g ∈ G with vg(U) = k ≥ 1 and ord(g) > 2 and suppose that | supp(U)| ≥ 2. Then there exists

some W ∈ A(G) such that W | (−g)kg−kU and |W | ∈ [3,D(G)− 1].

Proof. 1. Assume to the contrary that g1 = 2g2. Since |U | = D(G), it follows that Σ(g−1
1 U) = G \ {0}.

Hence there exists some W ∈ F(G) such that W | g−1
1 U and σ(W ) = −g2. If g2 |W , then g1g

−1
2 W is a

proper zero-sum subsequence of U , a contradiction. If g2 ∤ W , then g2W is a proper zero-sum subsequence
of U , a contradiction.

Assume to the contrary that ord(h) = 2 and g1 = 2g2 + h. There exists some W ∈ F(G) such
that W | g−1

1 U and σ(W ) = −g2 + h. If g2 |W , then g1g
−1
2 W is a proper zero-sum subsequence of U , a

contradiction. If g2 ∤ W and h |W , then g2h
−1W is a proper zero-sum subsequence of U , a contradiction.

If g2 ∤ W and h ∤ W , then g2hW is a proper zero-sum subsequence of U , a contradiction.
2. Since |(−g)kg−kU | = |U | = D(G), there exists some W ∈ A(G) such that W | (−g)kg−kU . It

is easy to show that |W | 6= 2. Assume the contrary that |W | = D(G). Then W = (−g)kg−kU and
ord(g) = 2k > k + 1. Let h ∈ supp(U) \ {g}. Since Σ(h−1U) = G \ {0}, there exists some T ∈ F(G)
such that T |h−1U and σ(T ) = (k + 1)g. If g ∤ T , then gk−1T is a proper zero-sum subsequence of U , a
contradiction. Suppose that g |T , say T = gtT0 with t ∈ [1, k] and T0 | g

−kU . Then W ′ = (−g)k−t+1T0 is
a zero-sum subsequence of W = (−g)kg−kU . Since W is an atom, it follows that W ′ = W . This implies
that T0 = g−kU , a contradiction to T0 |T |h−1U . �

Proposition 3.5. Let G be a finite abelian group with D(G) ≥ 5. Then the following statements are

equivalent :

(a) G is isomorphic to C2 ⊕ C2n with n ≥ 2.

(b) There exist U, V ∈ A(G) with L(UV ) = {2,D(G)− 1,D(G)}.

Proof. (a) ⇒ (b) Let (e1, e2) be a basis of G with ord(e1) = 2 and ord(e2) = 2n with n ≥ 2. Then
D(G) = 2n+ 1, U = e1e

2n−1
2 (e1 + e2) ∈ A(G), and L

(
U(−U)

)
= {2,D(G)− 1,D(G)}.

(b) ⇒ (a) Since D(G) ∈ L(UV ), it follows that |U | = |V | = D(G) and V = −U . Let A ∈ A(G) with
A |U(−U). Then |A| ∈ {2, 3,D(G)}, and if |A| = D(G), then U(−U)A−1 is an atom of length D(G). Since
|U | = D(G), it follows that Σ(U) = G. By [18, Theorem 6.6.3], G is neither cyclic nor an elementary

2-group. Therefore, | supp(U)| ≥ 2 and may write U = gk1

1 · . . . · gks
s with g1, . . . , gs ∈ G pairwise distinct,

s ≥ 2, k1, . . . , ks ∈ N, and ord(g1) > 2.
We continue with the following assertion.

A1. If ord gi > 2 for some i ∈ [1, s], then there exist distinct elements h1, h2 ∈ supp(U) such that
gi = h1 + h2.

A2. If ord gi > 2 for some i ∈ [1, s], then there exist distinct elements f1, f2 ∈ supp(U) such that
gi = f1 + f2, ord(f1) > 2, and ord(f2) = 2.

Proof of A1. Let i ∈ [1, s] with ord(gi) > 2. By Lemma 3.4.2, there exists an atom W ∈ A(G) such

that W | g−ki

i (−gi)
kiU and |W | ∈ [3,D(G) − 1]. Then W |U(−U) infers |W | = 3. Thus W = (−gi)

2h1

with h1 |U or W = (−gi)h1h2 with h1h2 |U . In the first case h1 = 2gi, a contradiction to Lemma 3.4.1.
Thus the second case holds, and again Lemma 3.4.1 implies that h1 and h2 are distinct. �
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Proof of A2. Let i ∈ [1, s] with ord(gi) > 2, say i = 1. By A1, we may assume that g1 = g2 + g3 and
hence ord(g2) > 2 or ord(g3) > 2. Assume to the contrary that ord(g2) > 2 and ord(g3) > 2. Again by
A1, there are distinct h1, h2 ∈ supp(U) such that g2 = h1 + h2. Then {h1, h2} ∩ {g1, g3} 6= ∅ otherwise
(−g1)h1h2g3 would be an atom of length 4 dividing U(−U). Since g2 = g1 + hi with i ∈ [1, 2] cannot
hold, we obtain that g2 = g3 + h with h ∈ {h1, h2}. Repeating the argument we infer that g3 = g2 + h′

with h′ ∈ supp(U). It follows that h+ h′ = 0 which implies that h = h′, ord(h) = 2, and g1 = 2g3 + h, a
contradiction to Lemma 3.4.1. �

Since ord(g1) > 2, by A2 we may assume that g1 = g2 + g3 with ord(g2) > 2 and ord(g3) = 2. If s = 3,
then G = 〈supp(U)〉 = 〈g1, g2, g3〉 = 〈g2, g3〉 ∼= C2 ⊕ C2n with n ≥ 2. Assume to the contrary that s ≥ 4.
We distinguish two cases.

CASE 1: There is an i ∈ [4, s] such that ord(gi) > 2, say i = 4.
By A2, we may assume g4 = h1 + h2 with ord(h1) > 2 and ord(h2) = 2. We assert that {g1, g2, g3} ∩

{g4, h1, h2} = ∅. Assume to the contrary that this does not hold. Taking into account the order of the
elements and that |{g1, . . . , g4}| = 4 we have to consider the following three cases:

• If h2 = g3, then g1+g4 = g2+h1 and hence (−g1)(−g4)g2h1 is an atom of length 4 dividing U(−U),
a contradiction.

• If h1 = g1, then (−g4)g2g3h2 is an atom of length 4 dividing U(−U), a contradiction.
• If h1 = g2, then (−g4)g1g3h2 is an atom of length 4 dividing U(−U), a contradiction.

Thus we have {g1, g2, g3}∩{g4, h1, h2} = ∅. Obviously, (−g1)g2g3, g1(−g2)(−g3), (−g4)h1h2, and g4(−h1)(−h2)
are atoms of length 3 dividing U(−U), and therefore their product (−g1)g2g3 · g1(−g2)(−g3) · (−g4)h1h2 ·
g4(−h1)(−h2) divides U(−U), a contradiction to L

(
U(−U)

)
= {2,D(G)− 1,D(G)}.

CASE 2: ord(gi) = 2 for all i ∈ [4, s].
If k1 ≥ 2 and k2 ≥ 2, then (−g1)

2g22 is an atom of length 4 dividing U(−U), a contradiction. Thus
k1 = 1 or k2 = 1, say k1 = 1. Since g1 + k2g2 + g3 + . . .+ gs = σ(U) = 0 and (k2 + 1)g2 = g4 + . . .+ gs, it
follows that ord(g2) = 2(k2 + 1). Thus

exp(G) + s− 3 ≤ D(G) = |U | = k2 + s− 1 ≤ 2(k2 + 1) + s− 4 ≤ exp(G) + s− 4 ,

a contradiction. �

Proposition 3.6. Let G be a finite abelian group with D(G) ≥ 5. Then there are no U, V ∈ A(G) with

L(UV ) = {2,D(G)− 1} and |U | = |V | = D(G).

Proof. Assume to the contrary that U, V ∈ A(G) with these properties do exist. If A ∈ A(G) with A |UV ,
then |A| ∈ {2, 3, 4,D(G)}. Since Σ(U) = Σ(V ) = G and G cannot be cyclic, it follows that | supp(U)| ≥ 2
and | supp(V )| ≥ 2. We distinguish two cases.

CASE 1: For all A ∈ A(G) with A |UV we have that |A| ∈ {2, 3,D(G)}.
Then UV has a factorization of the form UV = W1 · . . . · WD(G)−1 where W1, . . . ,WD(G)−1 ∈ A(G),

|WD(G)−2| = |WD(G)−1| = 3, and all the other Wi have length 2. Thus we may set

U = g1 · . . . · glh1h4h5 and V = (−g1) · . . . · (−gl)(−h2)(−h3)(−h6) ,

where l ∈ N, g1, . . . , gl, h1, . . . , h6 ∈ G not necessarily distinct such that h1 = h2 + h3, h6 = h4 + h5 and
{h1, h4, h5} ∩ {h2, h3, h6} = ∅.

Since V (−g6)
−1 is a zero-sum free sequence of length D(G)−1, there exists a subsequence T of V (−g6)

−1

such that σ(T ) = h4. Thus Th5(−h6) is a zero-sum subsequence of UV . Since T (−h6) is zero-sum free, we
obtain that Th5(−h6) is an atom of length |Th5(−h6)| ∈ {3, D(G)}. If |Th5(−h6)| = 3, then |T | = 1 which
implies that h4 |V . If |Th5(−h6)| = D(G), then Th5(−h6) = V which implies that h5 |V . Therefore, we
obtain that h4 ∈ supp(U) ∩ supp(V ) or h5 ∈ supp(U) ∩ supp(V ). Without loss of generality, we assume
that h4 ∈ supp(U) ∩ supp(V ).

We start with the following assertions.
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A1. ord(h4) > 2, (−2h4)
2 |U , and (−2h4)

2 |V .
A2. If gi 6∈ {h1, . . . , h6} for some i ∈ [1, l], then ord(gi) = 2.

Proof of A1. Since −gi 6= h4 for all i ∈ [1, l], we obtain that h4 ∈ {−h2,−h3,−h6} which implies that
ord(h4) > 2.

By the symmetry of U and V , we only need to prove that (−2h4)
2 |U . For any g ∈ supp(U) with

g 6= h4, consider the sequence Ug−1h4. Since |Ug−1h4| = D(G) and Ug−1h4 |UV , there exists a atom A
with A |Ug−1h4 and |A| = 3 by Lemma 3.4.2. Note that h2

4 |A. Therefore, −2h4 |Ug−1. If ord(h4) = 3,
then h4 = −2h4 and A = h3

4 which implies that h2
4 |U . If ord(g4) > 3. Then −2h4 6= h4. Thus we can

choose g = −2h4 which implies that (−2h4)
2 |U . �

Proof of A2. Let i ∈ [1, l] such that gi 6∈ {h1, . . . , h6} and assume to the contrary that ord(gi) > 2. Let
v = vgi(U) = v−gi(V ). By Lemma 3.4.2, we obtain that there exists an atom W such that W | g−v

i (−gi)
vU

and |W | = 3. By Lemma 3.4.1, v−gi(W ) = 1. Thus there exist f1, f2 ∈ supp(U) such that gi = f1 + f2.
Obviously, f1f2 ∤ g1 · . . . ·gl. If f1 | g1 · . . . ·gl and f2 |h1h4h5, then f2 = gi+(−f1). Since f2 is an element of
an atom of length 3, we can substitute f2 by gi(−f1) to get an atom of length 4, a contradiction. Therefore,
f1f2 |h1h4h5. If f1f2 = h4h5, then gi = h6, a contradiction. By the symmetry of h4 and h5, we only need
to consider f1f2 = h1h4. Since (−gi)h1h4 is an atom, gih5(−h2)(−h3)(−h6) can only be a product of two
atoms which implies that gi ∈ {h2, h3, h6}, a contradiction. �

We continue with the following two subcases.

CASE 1.1: ord(h4) > 3.
By A1, we have (−2h4)

2 |U and (−2h4)
2 |V . Thus, for any i ∈ [1, l], gi 6= −2h4 and −gi 6= −2h4.

Therefore, we obtain that h1 = h5 = −2h4 and −h6 = h4, and hence −h2 = −h3 = −2h4. Then
−2h4 = h1 = h2+h3 = 4h4 which implies that ord(h4) = 6. ByA2, we obtain that U = g1 ·. . .·glh4(−2h4)

2

with ord(g1) = . . . = ord(gl) = 2 and ord(h4) = 6. Since D(G) ≥ 5, we get l ≥ 2. Then 6 + l − 1 =
exp(G) + l− 1 ≤ D(G) = |U | = l + 3, a contradiction

CASE 1.2: ord(h4) = 3.
By A1, h2

4 |U and h2
4 |V . Thus h4

4 |h1h4h5(−h2)(−h3)(−h6). But h6
4 6= h1h4h5(−h2)(−h3)(−h6).

Without loss of generality, we can assume that h4 = h5 = −h3 = −h6, h1 6= h4, and −h2 6= h4.
Suppose vh1

(U) > 1 and v−h2
(V ) > 1. Then −h1 |V and h2 |U . Since h1 + (−h2) + h4 = 0, then

(−h1)h2h
2
4 is an atom of length 4 and divides UV , a contradiction. Thus, by symmetry, we may assume

that v−h2
(U) = 1. Then h2 ∤ U . Gathering the gi’s, which are equal to h1 and renumbering if necessary

we obtain that U = g1 · . . . · gshv
1h

2
4 with s ∈ [0, l], v = vh1

(U), ord(g1) = . . . = ord(gs) = 2 (by A2), and
ord(h4) = 3.

If s = 0, then vh1 = h4 and G = 〈h1〉, a contradiction.
Suppose s ≥ 1. Since 2σ(U) = 2vh1 + 4h4 = 0, we obtain that 2h4 = 2vh1 and 6vh1 = 0. Since

(−h1)
v−1h2

4 |V , we obtain that (−h1)
v−1h2

4 is zero-sum free and, for any j ∈ [v + 1, 2v], we have jh1 ∈
Σ
(
(−h1)

v−1h2
4

)
. This implies that ord(h1) > 2v. Thus 6v/ ord(h1) < 3 which implies that ord(h1) = 3v

or 6v. But σ(hv
1h

2
2) = 3vh1 6= 0, hence ord(h1) = 6v = exp(G). Therefore,

exp(G) + s− 1 ≤ D(G) = |U | = s+ v + 2 ≤ 6v + s− 3 ≤ exp(G) + s− 3 ,

a contradiction.

CASE 2: There exists an A ∈ A(G) with A |UV and |A| = 4.
Then UV has a factorization of the form UV = W1 · . . . · WD(G)−1 where W1, . . . ,WD(G)−1 ∈ A(G),

|WD(G)−1| = 4, and all the other Wi have length 2. Conversely, note that for any A′ ∈ A(G) with A′ |UV

and |A′| = 4, UV (A′)−1 can only be a product of atoms of length 2 because D(G) ≥ 5. We start with the
following assertion.

A3. If g ∈ supp(U) ∩ supp(V ), then ord(g) = 2.
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Proof of A3. Let U = g1·. . .·glh1h2 and V = (−g1)·. . .·(−gl)h3h4 where l ∈ N, g1, . . . , gl, h1, . . . , h4 ∈ G
not necessarily distinct and WD(G)−1 = h1h2h3h4. Let g ∈ supp(U)∩ supp(V ). If g = gi for some i ∈ [1, l],
then g |V , −g |V , and hence g = −g. If g = −gi for some i ∈ [1, l], then g |U , −g |U , and hence g = −g.

It remains to consider the case where g ∈ {h1, h2} ∩ {h3, h4}, say h1 = h3 = g. We will show that this
is not possible. Assume this holds, choose an h ∈ supp(U) \ {g}, and consider the sequence X = h−1Uh3.
Since |X | = D(G), there exists an atom A ∈ A(G) such that A |X and |A| ∈ [3, 4]. Note that h1h3 |A.

Suppose that |A| = 3. Then there exists h′ ∈ supp(U) such that h′ = −h1 − h3 = −2g. If h′ = h2, then
h1h2h3 ia a proper zero-sum sequence of WD(G)−1, a contradiction. Otherwise, h′ ∈ {g1, . . . , gl}, hence
−h′ = 2g ∈ supp(V ), a contradiction to h3 = g ∈ supp(V ) (recall Lemma 3.4).

Suppose that |A| = 4. If h2 |A, then (note that h1 + h2 + h3 + h4 = 0) A = h1h2h3h4 and −h4 |V ,
a contradiction. Thus h2 ∤ A, and the similar argument shows that h4 ∤ A. This implies that A =
gigjh1h3 with i, j ∈ [1, l]. Then A and A′ = (−gi)(−gj)h2h4 are two atoms of length 4 dividing UV , a
contradiction. �

Clearly, there are precisely two possibilities for U and V which will be discussed in the following two
subcases.

CASE 2.1: U = gk1

1 · . . . · gkl

l hr1−1
1 hr2−1

2 hr3−1
3 hr4−1

4 h1h2 and

V = (−g1)
k1 · . . . · (−gl)

kl(−h1)
r1−1(−h2)

r2−1(−h3)
r3−1(−h4)

r4−1(−h3)(−h4) , where

k1, . . . , kl, r1, . . . , r4 ∈ N, g1, . . . , gl, h1, . . . , h4 are pairwise distinct, and h1h2(−h3)(−h4) = WD(G)−1.
We start with the following assertions.

A4. For each gi ∈ {g1, . . . , gl} with ord(gi) > 2, we have that gi = h1 + h2.
A5. r1 = r2 = r3 = r4 = 1.
A6. ord(gi) = 2 for all i ∈ [1, l].

Proof of A4. Let i ∈ [1, l] such that ord(gi) > 2, say i = 1. Then, by Lemma 3.4.2, there exists an

atom A ∈ A(G) such that A | (−g1)
k1g−k1

1 U and |A| ∈ [3, 4]. We distinguish four subcases depending on
the multiplicity of v−g1(A) and on |A|.

Suppose that v−g1(A) = 3. Then |A| = 4. Since A ∤ UV (WD(G)−1)
−1, we must have that h1 |A or

h2 |A. Then A = (−g1)
3hi with i ∈ [1, 2], say i = 1. It follows that A′ = g31h2(−h3)(−h4) is a zero-sum

subsequence of UV (A)−1 which implies that A′ is a product of atoms of length 2, a contradiction.
Suppose that v−g1(A) = 2. Then |A| = 4 by Lemma 3.4.1. Since A ∤ UV (WD(G)−1)

−1, we must

have that h1 |A or h2 |A. If h1h2 |A, then A = (−g1)
2h1h2, and hence A′ = g21(−h3)(−h4) is an atom

of length 4 and divides UV A−1, a contradiction. By symmetry, we may assume that h1 |A and h2 ∤
A. Thus A = (−g1)

2h1h, where h ∈ {g2, . . . , gl, h1, h3, h4} and (−h)(−h3)(−h4) |V . Therefore A′ =
g21h2(−h3)(−h4)(−h) is a zero-sum subsequence of UV A−1 which implies that A′ is a product of three
atoms of length 2, a contradiction.

Suppose that v−g1 (A) = 1 and |A| = 4. Since A ∤ UV (WD(G)−1)
−1, we must have that h1 |A or h2 |A.

If h1h2 |A, then A = (−g1)h1h2h, where h ∈ {g2, . . . , gl, h1, h2, h3, h4} and (−h)(−h3)(−h4) |V . Hence
A′ = g1(−h3)(−h4)(−h) is an atom of length 4 and divides UV A−1, a contradiction. By symmetry,
we may assume that h1 |A and h2 ∤ A. Thus A = (−g1)h1hh

′ where h, h′ ∈ {g2, . . . , gl, h1, h3, h4} and
(−h)(−h′)(−h3)(−h4) |V . Thus A′ = g1(−h)(−h′)h2(−h3)(−h4) is a zero-sum subsequence of UV A−1

which implies that A′ is a product of three atoms of length 2, a contradiction.
Suppose that v−g1(A) = 1 and |A| = 3. Since A ∤ UV (WD(G)−1)

−1, we must have that h1 |A or
h2 |A. If h1h2 ∤ A, by symmetry we may assume that h1 |A and h2 ∤ A. Thus A = (−g1)h1h, where
h ∈ {g2, . . . , gl, h1, h3, h4} and (−h)(−h3)(−h4) |V . It follows that A′ = g1(−h)h2(−h3)(−h4) is a zero-
sum sbusequence of UV A−1 which implies that A′ is a product of two atoms, a contradiction. Therefore,
h1h2 |A and g1 = h1 + h2. �

Proof of A5. By symmetry it is sufficient to show that r3 = 1. Assume to the contrary that r3 ≥ 2.
We proceed in several steps.
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(i) In the first step we will show that h3 = gi + h1 for some i ∈ [1, l].

By Lemma 3.4.2, there exists an atom A ∈ A(G) such that A |h
−(r3−1)
3 (−h3)

r3−1U and |A| ∈ [3, 4]. We
distinguish four subcases depending on the multiplicity of v−g1(A) and on |A|.

Suppose that v−h3
(A) = 3. Then |A| = 4. Since A ∤ UV (WD(G)−1)

−1, we must have that h1 |A or

h2 |A. Then A = (−h3)
3hi with i ∈ [1, 2], say i = 1. Therefore A′ = h2

3h2(−h4) is an atom of length 4
and divides UV A−1, a contradiction.

Suppose that v−h3
(A) = 2. Then |A| = 4 by Lemma 3.4.1. Since A ∤ UV (WD(G)−1)

−1, we must have

that h1 |A or h2 |A. If h1h2 |A, then A = (−h3)
2h1h2 which implies that h3 = h4, a contradiction. By

symmetry, we may assume that h1 |A and h2 ∤ A. Thus A = (−h3)
2h1h, where h ∈ {g1, . . . , gl, h1, h4} and

(−h)(−h3)(−h4) |V . Therefore A′ = h2
3h2(−h3)(−h4)(−h) is a zero-sum subsequence of UV A−1 which

implies that A′ is a product of three atoms of length 2, a contradiction.
Suppose that v−h3

(A) = 1 and |A| = 4. Since A ∤ UV (WD(G)−1)
−1, we must have that h1 |A or

h2 |A. If h1h2 |A, then A = (−h3)h1h2h with h ∈ {g1, . . . , gl, h1, h2, h4} and −h |V . Hence h = −h4 and
−h = h4 |V , a contradiction. By symmetry, we may assume that h1 |A and h2 ∤ A. Thus A = (−h3)h1hh

′

where h, h′ ∈ {g1, . . . , gl, h1, h4} and (−h)(−h′)(−h3)(−h4) |V . Thus A′ = (−h)(−h′)h2(−h4) is an atom
of length 4 and divides UV A−1, a contradiction

Suppose that v−h3
(A) = 1 and |A| = 3. Since A ∤ UV (WD(G)−1)

−1, we must have that h1 |A or h2 |A.
If h1h2 |A, then A = (−h3)h1h2 which implies that h4 = 0, a contradiction. Thus, by symmetry, we may
assume that h1 |A and h2 ∤ A. Then A = (−h3)h1h, where h ∈ {g1, . . . , gl, h1, h4}. By Lemma 3.4.1, we
obtain that h 6∈ {h1, h4}. Therefore, h3 = h1 + gi for some i ∈ [1, l].

(ii) In the second step we will show that ord(gj) = 2 for all j ∈ [1, l] and r1 = 1.
Assume to the contrary that there is a j ∈ [1, l] such that ord(gj) > 2. Then gj = h1 + h2 by A4

and hence A1 = gj(−h3)(−h4) and A2 = gi(−h3)h1 are two atoms of length 3 and divide UV . It follows
that UV (A1A2)

−1 is a product of atoms of length 2, but vh2
(UV (A1A2)

−1) = vh2
(UV ) > v−h2

(UV ) =
v−h2

(UV (A1A2)
−1), a contradiction.

Assume to the contrary that r1 ≥ 2. Since ord(gi) = 2 and h3 = h1 + gi, we obtain that h2
1(−h3)

2 and
(−h1)h3gi are two atoms and divide UV , a contradiction.

(iii) In the third step we show that ord(h3) = 4r3.

Consider the sequence X = U(hr3−1
3 h1)

−1(−h3)
r3 . Since |X | = D(G), there exists an atom A ∈ A(G)

with A |X and |A| ∈ {3, 4,D(G)}. We distinguish three subcases depending on |A|.
Suppose that |A| = 3. Since A ∤ UV (WD(G)−1)

−1 and r1 = 1, we must have that h2 |A. Thus
A = (−h3)h2h, where h ∈ {g1, . . . , gl, h2,−h3}. By Lemma 3.4.1, h 6∈ {h2,−h3}. Therefore, A and
A′ = (−h3)h1gi are two atoms of length 3 and divide UV . It follows that UV (AA′)−1 is a product of
atoms of length 2 but vh4

(UV (AA′)−1) < v−h4
(UV (AA′)−1), a contradiction.

Suppose that |A| = 4. Then UV A−1 is a product of atoms of length 2, but r1 = 1 = vh1
(UV A−1) >

v−h1
(UV A−1) = 0, a contradiction.

Suppose that |A| = D(G). Then A = X and hence h1 = −(2k3 − 1)h3. By steps (i) and (ii), we obtain
that gi = 2r3h3 and 4r3h3 = 0. Since Uh−1

1 is zero-sum free and for each j ∈ [1, 2r3 − 1], jh3 ∈ Σ(Uh−1
1 ),

then ord(h3) > 2r3 which implies that ord(h3) = 4r3.

(iv) In the final step we will obtain a contradiction to our assumption that r3 ≥ 2. Clearly, similar
arguments as given in the steps (i),(ii), and (iii) show that r2 ≥ 2 implies that ord(h2) = 4r2, and that
r4 ≥ 2 implies that ord(h4) = 4r4. We proceed with the following four subcases depending on r2 and r4.

Suppose that r2 ≥ 2 and r4 ≥ 2. Since h3 = h1 + gi and ord(gi) = 2, we obtain that h2 = h4 + gi and
hence 2h2 = 2h4. Therefore, (−h2)h4gi and h2

2(−h4)
2 are two atoms and divide UV , a contradiction.

Suppose that r2 = r4 = 1. Then U = g1 · . . . · glh
r3−1
3 h1h2 and

exp(G) + l − 1 ≤ D(G) = l + r3 + 1 < l − 1 + 4r3 ≤ exp(G) + l − 1 ,

a contradiction.
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Suppose that r2 = 1 and r4 ≥ 2. Then U = g1 · . . . · glh
r3−1
3 hr4−1

4 h1h2 and

exp(G) + l − 1 ≤ D(G) = l + r3 + r4 < l − 1 + 4max{r3, r4} ≤ exp(G) + l − 1 ,

a contradiction.
Suppose that r4 = 1 and r2 ≥ 2. Then U = g1 · . . . · glh

r3−1
3 hr2−1

2 h1h2 and

exp(G) + l − 1 ≤ D(G) = l + r3 + r2 < l − 1 + 4max{r2, r3} ≤ exp(G) + l − 1 ,

a contradiction. �

Proof of A6. Assume the contrary that there is an i ∈ [1, l] such that ord(gi) > 2, say i = 1. Then A4
implies that g1 = h1 + h2. Since g1, . . . , gl are pairwise distinct, it follows that ord(g2) = . . . = ord(gl) = 2

and k2 = . . . = kl = 1. Thus U = gk1

1 g2 · . . . · glh1h2, 0 = σ(U) = k1g1 + g2 + . . . + gl + g1, whence
ord((k1 + 1)g1) = 2 and ord(g1) = 2(k1 + 1) ≥ 4. It follows that

exp(G) + l − 1 ≤ D(G) = |U | = k1 + l+ 1 ≤
ord(g1)

2
+ l ≤ ord(g1) + l − 2 < exp(G) + l − 1 ,

a contradiction. �

Now by A4, A5, and A6, U has the form U = g1 · . . . · glh1h2 with ord(gi) = 2 for each i ∈ [1, l]. If
exp(G) ≥ 4, then

exp(G) + l− 1 ≤ D(G) = |U | = l + 2 < 4 + l − 1 ,

a contradiction. Thus G must be an elementary 2-group. Since (g1, . . . , gl, h1) is a basis of G, then
h2 = g1 + . . .+ gl + h1 and h1 + h2 = h3 + h4 = g1 + . . .+ gl. We can assume that h3 = h1 +

∑
i∈I gi for

some ∅ 6= I ( [1, l] and h4 = h1 +
∑

i∈[1,l]\I gi. Then A1 = h3h1

∏
i∈I gi and A2 = h1h4

∏
i∈[1,l]\I gi are

two atoms of lengths |A1|, |A2| ∈ [3,D(G)− 1]. If i ∈ [1, 2] and |Ai| = 4, then UV A−1
i has to be a product

of atoms of length 2, a contradiction. Thus it follows that |A1| = |A2| = 3 whence l = 2 which implies
that D(G) = 4, a contradiction.

CASE 2.2: U = gk1

1 · . . . · gkl

l hr−2hr3−1
3 hr4−1

4 h2 and

V = (−g1)
k1 · . . . · (−gl)

kl(−h)r−2(−h3)
r3−1(−h4)

r4−1(−h3)(−h4) , where

k1, . . . , kl, r1, . . . , r4 ∈ N, g1, . . . , gl, h, h3, h4 are pairwise distinct with the only possible exception that
h3 = h4 may hold, and h2(−h3)(−h4) = WD(G)−1.

We start with the following assertions.

A7. For each i ∈ [1, l] we have ord(gi) = 2.
A8. h3 = h4.

Proof of A7. Assume to the contrary that there is an i ∈ [1, l], say i = 1, such that ord(g1) > 2.

Then, by Lemma 3.4.2, there exists an atom A ∈ A(G) such that A | (−g1)
k1g−k1

1 U and |A| ∈ [3, 4].
Since A ∤ UV (WD(G)−1)

−1, we must have that h |A. We distinguish four subcases depending on the
multiplicity of v−g1(A) and on |A|.

Suppose that v−g1(A) = 3. Then |A| = 4 and A = (−g1)
3h . It follows that A′ = g31h(−h3)(−h4) is a

zero-sum subsequence of UV (A)−1 which implies that A′ is a product of atoms of length 2, a contradiction.
Suppose that v−g1 (A) = 2. Then |A| = 4 by Lemma 3.4.1. If h2 |A, then A = (−g1)

2h2, and hence A′ =
g21(−h3)(−h4) is an atom of length 4 and divides UV A−1, a contradiction. If h2 ∤ A, we obtain that A =
(−g1)

2hf , where f ∈ {g2, . . . , gl, h3, h4} and (−f)(−h3)(−h4) |V . Therefore A′ = g21h(−h3)(−h4)(−f)
is a zero-sum subsequence of UV A−1 which implies that A′ is a product of three atoms of length 2, a
contradiction.

Suppose that v−g1(A) = 1 and |A| = 4. If h2 |A, then A = (−g1)h
2f , where f ∈ {g2, . . . , gl, h, h3, h4}

and (−f)(−h3)(−h4) |V . Hence A′ = g1(−h3)(−h4)(−f) is an atom of length 4 and divides UV A−1, a con-
tradiction. If h2 ∤ A, then A = (−g1)hff

′ where f, f ′ ∈ {g2, . . . , gl, h3, h4} and (−f)(−f ′)(−h3)(−h4) |V .
Thus A′ = g1(−f)(−f ′)h(−h3)(−h4) is a zero-sum subsequence of UV A−1 which implies that A′ is a
product of three atoms of length 2, a contradiction.
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Suppose that v−g1(A) = 1 and |A| = 3. If h2 |A, then g1 = 2h, a contradiction to Lemma 3.4.1.
If h2 ∤ A, then A = (−g1)hf , where f ∈ {g2, . . . , gl, h3, h4} and (−f)(−h3)(−h4) |V . It follows that
A′ = g1(−f)h(−h3)(−h4) is a zero-sum sbusequence of UV A−1 which implies that A′ is a product of two
atoms, a contradiction. �

Proof of A8. Assume to the contrary that h3 6= h4. If r3 = r4 = 1, then U = g1 · . . . · glhr with l ≥ 1,
ord(h) = 2r ≥ 4, and hence

exp(G) + l − 1 ≤ D(G) = |U | = l+ r ≤ 2r + l − 4 < exp(G) + l − 1 ,

a contradiction. Thus after renumbering if necessary we may assume that r3 ≥ 2. We will show this is
impossible.

By Lemma 3.4, there exists an atom A ∈ A(G) such that A |h
−(r3−1)
3 (−h3)

r3−1U and |A| ∈ [3, 4]. Since
A ∤ UV (WD(G)−1)

−1, we must have that h |A. We distinguish four subcases depending on the multiplicity
of v−h3

(A) and on |A|.
Suppose that v−h3

(A) = 3. Then |A| = 4 and A = (−h3)
3h . It follows that A′ = h2

3h(−h4) is an atom
and divides UV (A)−1, a contradiction.

Suppose that v−h3
(A) = 2. Then |A| = 4 by Lemma 3.4.1. If h2 |A, then A = (−h3)

2h2 which implies
that h3 = h4, a contradiction. If h2 ∤ A, we obtain that A = (−h3)

2hf , where f ∈ {g1, . . . , gl, h4} and
(−f)(−h3)(−h4) |V . Therefore A′ = h3h(−h4)(−f) is an atom and divides UV A−1, a contradiction.

Suppose that v−h3
(A) = 1 and |A| = 4. If h2 |A, then A = (−h3)h

2f , where f ∈ {g1, . . . , gl, h, h4}
and (−f)(−h3)(−h4) |V . Hence h4 = 2h − h3 = −f |V , a contradiction. If h2 ∤ A, then A = (−h3)hff

′

where f, f ′ ∈ {g1, . . . , gl, h4} and (−f)(−f ′)(−h3)(−h4) |V . Thus A′ = (−f)(−f ′)h(−h4) is an atom and
divides UV A−1, a contradiction.

Suppose that v−h3
(A) = 1 and |A| = 3. Since h2(−h3)(−h4) is an atom, we obtain that h2 ∤ A, and

hence A = (−h3)hf , where f ∈ {g1, . . . , gl, h4} and (−f)(−h3)(−h4) |V . If f = h4, then h = 2h4 which
implies a contradiction to Lemma 3.4.1(recall f = h4 |U and h = 2h4 |U). If f 6= h4, by A7 ord(f) = 2
and hence 2h = 2h3 which implies that h3 = h4, a contradiction.

Suppose that v−h3
(A) = 3. Then |A| = 4. Since A ∤ UV (WD(G)−1)

−1, we must have that h |A. Then

h2
3h(−h4) is another atom of length 4, a contradiction.
Suppose that v−h3

(A) = 2. Then |A| = 4 by Lemma 3.4.1. Since A ∤ UV (WD(G)−1)
−1, we must have

that h |A. If A = (−h3)
2gih, A

′ = h3(−gi)h(−h4) is zero-sum and divide UV (A)−1, then A′ is a product
of two atoms of length 2, a contradiction. It follows that A can only be (−h3)

2h2 which implies that
h3 = h4, a contradiction.

Suppose that v−h3
(A) = 1 and |A| = 4. Since A ∤ UV (WD(G)−1)

−1, we must have that h |A. If h2 |A,
let A = (−h3)h

2gi, then gi = −h4 which implies that h4 = −gi |V , a contradiction. So we can assume
that vh(A) = 1. Let A = (−h3)gigjh, then 2h = 2h3 which implies that h3 = h4, a contradiction.

Suppose that v−h3
(A) = 1 and |A| = 3. Since A ∤ UV (WD(G)−1)

−1, we must have that h |A. Obviously

A 6= (−h3)h
2, so A = (−h3)gih with i ∈ [2, l]. Then 2h = 2h3 which implies h3 = h4, a contradiction. �

Now, by A7 and A8, U and V have the form

U = g1 · . . . · glh
r3−2
3 hr and V = g1 · . . . · gl(−h)r−2(−h3)

r3 ,

where l ≥ 0, r3 ≥ 2, r ≥ 2, g1, . . . , gl, h3, h ∈ G are pairwise distinct and 2h = 2h3.
If r3 = 2, then U = g1 · . . . · glhr, ord(h) = 2r, and

exp(G) + l− 1 ≤ D(G) = |U | = l + r ≤ 2r + l − 2 ,

a contradiction. Considering V and assuming r = 2 we end again up at a contradiction. Therefore we
obtain that r3 ≥ 3 and r ≥ 3.

If r3 ≥ 4 and r ≥ 4, then h2(−h3)
2 and (−h)2h2

3 are two atoms of length 4 and divide UV , a contradic-
tion.

Thus by symmetry, we may assume that r3 = 3 and r ≥ 3.
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Suppose that l = 0. Then σ(U) = h3 + rh = 0 which implies that G = 〈h〉, a contradiction.
Suppose that l ≥ 1. Then 2h3 + 2rh = 0 which implies that 2(r + 1)h = 0. Thus ord(h) = 2(r + 1) or

ord(h) = r + 1. If ord(h) = 2(r + 1), then

exp(G) + l − 1 ≤ D(G) = |U | = l + 1 + r < l − 1 + 2(r + 1) ≤ exp(G) + l − 1 ,

a contradiction. If ord(h) = r+ 1, then h = h3 + g1 + . . .+ gl and hence (−h)h3g1 · . . . · gl is an atom and
divides UV (h2(−h3)

2)−1, a contradiction �

Proposition 3.7. Let G be a finite abelian group with D(G) ≥ 5. Then the following statements are

equivalent :

(a) G is either an elementary 2-group, or a cyclic group, or isomorphic to C2 ⊕ C2n with n ≥ 2.

(b) There exist U, V ∈ A(G) with L(UV ) = {2,D(G)− 1} and |U | − 1 = |V | = D(G)− 1.

Proof. (a) ⇒ (b) Suppose that G is an elementary 2-group and let (e1, . . . , er) be a basis of G with
ord(e1) = . . . = ord(er) = 2. Then D(G) = r + 1, U = e1 · . . . · ere0 ∈ A(G), where e0 = e1 + . . . + er,
V = e1 · . . . · er−1(e0 + er) ∈ A(G), and L

(
UV

)
= {2, r}.

Suppose that G is cyclic, and let e ∈ G with ord(e) = |G| = D(G). Then U = e|G| ∈ A(G), V =
(−e)|G|−1(−2e) ∈ A(G), and L

(
UV

)
= {2, |G| − 1}.

Suppose that G is isomorphic to C2 ⊕C2n with n ≥ 2, and let (e1, e2) be a basis of G with ord(e1) = 2
and ord(e2) = 2n. Then D(G) = 2n + 1, U = e1e

2n−1
2 (e1 + e2) ∈ A(G), V = (−e2)

2n ∈ A(G), and
L(UV ) = {2, 2n}.

(b) ⇒ (a) Assume to the contrary that G is neither an elementary 2-group, nor a cyclic group, nor
isomorphic to C2 ⊕ C2n for any n ≥ 2. Then D(G) > exp(G) + 1.

Let A ∈ A(G) with A |UV . Then we have |A| ∈ {2, 3,D(G)− 1,D(G)}. Furthermore, if |A| = 3, then
UV A−1 is a product of atoms of length 2, and if |A| ∈ [D(G)− 1,D(G)], then UV A−1 ∈ A(G).

Since L(UV ) = {2,D(G)− 1} and |U | − 1 = |V | = D(G)− 1, U and V have the form

U = gk1

1 · . . . · gks

s and V = (−g1 − g2)(−g1)
k1−1(−g2)

k2−1(−g3)
k3 · . . . · (−gs)

ks ,

where s, k1, . . . , ks ∈ N, g1, . . . , gs ∈ G are pairwise distinct with the only possible exception that g1 = g2
may hold.

SinceG is not cyclic, we have s ≥ 2. Suppose that s = 2. If g1 = g2, then D(G) = k1+k2 = ord(g1) which
implies that G is a cyclic group, a contradiction. Suppose that g1 6= g2. Since D(G) > exp(G)+ 1, Lemma
3.2.2 implies that vg1(U)+ v−g1(V ) = k1+ k1− 1 ≤ ord(g1) and vg2(U)+ v−g2(V ) = k2+ k2− 1 ≤ ord(g2).
Then

D(G) = k1 + k2 ≤
ord(g1) + 1

2
+

ord(g2) + 1

2
≤ 1 + exp(G) < D(G) ,

a contradiction.
Thus from now on we suppose that s ≥ 3, and we continue with the following assertion.

A1. There exist atoms U ′, V ′ ∈ A(G) such that UV = U ′V ′, say

U ′ = g
′k′

1

1 · . . . · g
′k′

s′

s′ and V ′ = (−g′1 − g′2)(−g′1)
k′

1
−1(−g′2)

k′

2
−1(−g′3)

k′

3 · . . . · (−g′s′)
k′

s′ ,

where s′, k′1, . . . , k
′
s′ ∈ N, g′1, . . . , g

′
s′ ∈ G are pairwise distinct with the only possible exception that

g′1 = g′2 may hold, and g′1 + g′2 6∈ supp(U ′).

Proof of A1. If g1 + g2 6∈ supp(U), then we can choose U ′ = U and V ′ = V .

Suppose g1 + g2 ∈ supp(U), say g3 = g1 + g2. Then v−g3(V ) = k3 + 1 ≥ 2 and hence ord(g3) > 2. By
Lemma 3.4.1 and |U | = D(G), it follows that g1 6= g2. We claim that k1 = 1 or k2 = 1. Indeed, if k1 ≥ 2
and k2 ≥ 2, then A = g1g2(−g3) is an atom and A2 |UV , a contradiction.
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Suppose s = 3. Without loss of generality, we can assume that k1 = 1. Since D(G) > exp(G)+1, Lemma
3.2.2 implies that vg2(U)+ v−g2(V ) = k2+ k2− 1 ≤ ord(g2) and vg3(U)+ v−g3(V ) = k3+ k3+1 ≤ ord(g3).
Then

D(G) = |U | = 1 + k2 + k3 ≤ 1 +
ord(g2) + 1

2
+

ord(g3)− 1

2
≤ 1 + exp(G) < D(G) ,

a contradiction.
Thus we obtain that s ≥ 4. Since g−1

3 U is a zero-sum free sequence of length D(G) − 1, there exists
a subsequence T1 of g−1

3 U such that σ(T1) = (k3 + 1)g3. Therefore, (−g3)
k3+1T1 is a zero-sum sequence.

Thus T1 has the form T1 = gt3T2 with t ∈ [0, k3 − 1] and T2 | g
k1

1 gk2

2 gk4

4 · . . . · gks
s . Then (−g3)

k3+1−tT2 is
a zero-sum sequence without zero-sum subsequences of length 2 which implies that (−g3)

k3+1−tT2 is an
atom of lenth |(−g3)

k3+1−tT2| ∈ {3,D(G) − 1,D(G)}. Since k3 + 1 − t ≥ 2, (−g3)
k3+1−tT2 cannot be an

atom of length 3 by Lemma 3.4.1, hence t = 0, T1 = T2, and (−g3)
k3+1T1 can only be an atom of length

D(G) − 1 or D(G). It follows that ((−g3)
k3+1T1)

−1UV is also an atom and hence gk4

4 · . . . · gks
s |T1.

Thus any sequence T with T | g−1
3 U and σ(T ) = (k3 + 1)g3 has the property that gk4

4 · . . . · gks
s |T .

We continue with the following two subcases depending on |(−g3)
k3+1T1|.

Suppose |(−g3)
k3+1T1| = D(G)− 1. Since ((−g3)

k3+1T1)
−1UV is an atom, we obtain that k1 = k2 = 1

and T1 = (g1g2g
k3

3 )−1U which implies that 2(k3 + 1)g3 = 0. Since g−1
4 U is a zero-sum free sequence

of length D(G) − 1, there exists a subsequence W1 of g−1
4 U such that σ(W1) = (k3 + 2)g3. If g3 ∤ W1,

then gk3

3 W1 is a proper zero-sum subsequence of U , a contradiction. If g3 |W1, then g−1
3 W1 | g

−1
3 U and

σ(g−1
3 W1) = (k3 + 1)g3, but g

k4

4 · . . . · gks
s ∤ g−1

3 W1, a contradiction.
Suppose |(−g3)

k3+1T1| = D(G). Since ((−g3)
k3+1T1)

−1UV is an atom, we obtain that
(
k1 = 1 and

T1 = (g1g
k3

3 )−1U
)
or

(
k2 = 1 and T1 = (g2g

k3

3 )−1U
)
. By symmetry, we may assume that k1 = 1,

T1 = (g1g
k3

3 )−1U , and hence g1 = (−2k3 − 1)g3. Choose

U ′ = (−g3)
k3+1T1 = g2(−g3)g

k2−1
2 (−g3)

k3gk4

4 · . . . · gks

s and

V ′ = ((−g3)
k3+1T1)

−1UV = g1(−g2)
k2−1gk3

3 (−g4)
k4 · . . . · (−gs)

ks ,

then U ′, V ′ are two atoms with U ′V ′ = UV and g2 + (−g3) = −g1 6∈ supp(U ′). �

Thus from now on we may assume that g1 + g2 6∈ supp(U), and recall that s ≥ 3. We continue with
three further assertions.

A2. (supp(U) + supp(U)) ∩ (supp(U) \ {g1, g2}) = ∅.
A3. Let i ∈ [3, s] with ord(gi) > 2. Then

(
− 2kigi = g1 and k1 = 1

)
or

(
− 2kigi = g2 and k2 = 1

)
.

A4. If k1 = 1, then
(
g2 = −2g1 and k2 = 1

)
or

(
2g1 + 2g2 = 0 and k2 = 1

)
. If k2 = 1, then

(
g1 = −2g2

and k1 = 1
)
or

(
2g1 + 2g2 = 0 and k1 = 1

)
.

Proof of A2. Assume to the contrary that there exists an element h ∈ (supp(U)+supp(U))∩(supp(U)\
{g1, g2}). Thus there exist i, j ∈ [1, s] such that gi + gj = h with h ∈ {g3, . . . , gs}. Lemma 3.4.1 implies
that gi 6= gj. Since A = (−h)gigj is an atom of length 3, then A−1UV is a product of atoms of length 2.
It follows that h = g1 + g2 ∈ supp(U), a contradiction. �

Proof of A3. By Lemma 3.4.2, there is an A ∈ A(G) with A | g−ki

i (−gi)
kiU and |A| ∈ {3,D(G) − 1}.

By A2 and Lemma 3.4.1, we obtain that |A| 6= 3. Thus |A| = D(G). If A = g−ki

i (−gi)
ki−1U , then

(2ki − 1)gi = 0 which implies that vgi(U) + v−gi(V ) = 2ki > ord(gi). Lemma 3.2.2 implies a contradiction

to D(G) > exp(G) + 1. Hence A = (−gi)
kiT with T = g−ki

i h−1U , where h ∈ supp(U). Since T−1UV is an
atom, we obtain that

(
k1 = 1 and h = g1 = −2kigi

)
or

(
k2 = 1 and h = g2 = −2kigi

)
. �

Proof of A4. Suppose that k1 = 1. Then Y = (−g1−g2)g
k2

2 ·. . .·gks
s has length D(G). By our assumption

on supp(U), Y has no zero-sum subsequence of length 2. Therefore, Y has a zero-sum subsequence T of
length |T | ∈ {3,D(G) − 1,D(G)}. We continue with the following three subcases depending on |T |. If
|T | = 3, say T = (−g1 − g2)gigj with i, j ∈ [2, s] not necessarily distinct, then T and T ′ = g1g2(−gi)(−gj)
are two atoms and T ′T |UV , a contradiction. If |T | = D(G), then Y = T is an atom which implies that
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g2 = −2g1, −g1 − g2 = g1, and hence k1 = 1. If |T | = D(G) − 1, then k2 = 1, T = Y g−1
2 , and hence

2g1 + 2g2 = 0.
If k2 = 1, then the assertion follows along the same lines. �

The remainder of the proof will be divided into the following three cases.

CASE 1: |{i ∈ [3, s] | ord(gi) > 2}| ≥ 2, say ord(g3) > 2 and ord(g4) > 2.
By A3, we can assume that

(
k1 = 1 and g1 = −2k3g3 = −2k4g4

)
or

(
g1 = −2k3g3, g2 = −2k4g4 and

k1 = k2 = 1
)
.

Consider the sequence W = gk1

1 gk2

2 (−g3)
k3(−g4)

k4gk5

5 · . . . · gks
s . Since |W | = D(G), there exists an atom

Z ∈ A(G) such that Z |W and |Z| ∈ {3,D(G) − 1,D(G)}. We distinguish three subcases depending on
|Z|.

Suppose |Z| = 3. By A2 and Lemma 3.4.1, g1 = g3 + g4 or g2 = g3 + g4. If g1 = g3 + g4, then
(−g1 − g2)g3g4g2 and g1(−g3)(−g4) are two atoms and divide UV , a contradiction. If g2 = g3 + g4, then
(−g1 − g2)g1g3g4 and g2(−g3)(−g4) are two atoms and divide UV , a contradiction.

Suppose |Z| = D(G)− 1. Since UV Z−1 is a atom, we obtain that Z = Wg−1
1 or Z = Wg−1

2 . Therefore,
−2k3g3 − 2k4g4 = g1 or g2. Our assumption infers that −2k3g3 − 2k4g4 = g2 and g1 = −2k3g3 = −2k4g4
which implies that 2g1 = g2, a contradiction to Lemma 3.4.1.

Suppose |Z| = D(G). Then we obtain that 2k3g3 + 2k4g4 = 0. Our assumption infers that k1 = 1,
g1 = −2k3g3 = −2k4g4, and hence ord(g1) = 2. Therefore, 4k3g3 = 0, g1 = 2k3g3, and hence k3 ≥ 2
by Lemma 3.4.1. Since g−1

1 U is a zero-sum sequence of length D(G) − 1, there exists a subsequence W
of g−1

1 U such that σ(W ) = (2k3 + 1)g3. If g3 |W , then g1g
−1
3 W is a proper zero-sum subsequence of

U , a contradiction. Suppose g3 ∤ W . Then g1(−g3)W is an atom and divides UV which implies that
|g1(−g3)W | ∈ {3,D(G) − 1,D(G)}. Since g3(−g3) |UV (g1(−g3)W )−1, then UV (g1(−g3)W )−1 is not an
atom. Thus |g1(−g3)W | = 3 which implies that g3 ∈ supp(U) ∩ supp(V ), a contradiction to A2.

CASE 2: |{i ∈ [3, s] | ord(gi) > 2}| = 1, say ord(g3) > 2.
By A3, we may assume that k1 = 1 and g1 = −2k3g3. By A4, we obtain that

(
g2 = −2g1 and k2 = 1

)

or
(
2g1 + 2g2 = 0 and k2 = 1

)
. We continue with the following two subcases.

Suppose that 2g1 +2g2 = 0 and k2 = 1. Since σ(U) = g1 + g2 + k3g3 + g4 + . . .+ gs = 0, we obtain that
2k3g3 = 0 = −g1, a contradiction.

Suppose that g2 = −2g1 = 4k3g3 and k2 = 1. If s = 3, then G = 〈g3〉 is cyclic, a contradiction. Hence
s ≥ 4 and G = 〈g1, . . . , gs−1〉 = 〈g3, . . . , gs−1〉 which implies that r(G) = s − 3 and exp(G) = ord(g3)
is even. Since D(G) > exp(G) + 1, by Lemma 3.2.2, we infer that vg3(U) + v−g3(V ) = 2k3 ≤ ord(g3).
Therefore, g1 = −2k3g3 6= 0 infers that ord(g3) ≥ 2k3 + 2 ≥ 4. Thus

exp(G) + s− 4 ≤ D(G) = |U | = k3 + s− 1 ≤
ord(g3)

2
− 1 + s− 1 ≤ ord(g3) + s− 4

which implies that ord(g3) = 4, a contradiction to g2 = 4k3g3 6= 0.

CASE 3: |{i ∈ [3, s] | ord(gi) > 2}| = 0.
Since σ(U) = k1g1 + k2g2 + g3 + . . .+ gs = 0, we obtain that 2k1g1 + 2k2g2 = 0.
Suppose that g1 = g2. Then ord(g1) = 2(k1 + k2) ≥ 4. It follows that

D(G) = k1 + k2 + s− 2 =
ord(g1)

2
+ s− 2 < ord(g1)− 1 + s− 2 ≤ D(G) ,

a contradiction.
Thus g1 6= g2. Consider the sequence S = (−g1 − g2)(−g1)

k1−1gk2

2 g3 · . . . · gs. Since |S| = D(G), there
exists an atom Z ∈ A(G) such that Z |S and |Z| ∈ {3,D(G) − 1,D(G)}. We distinguish three subcases
depending on |Z|.

Suppose that |Z| = D(G). Then Z = S and g2 = −2k1g1 = 2k2g2. Hence (2k2 − 1)g2 = 0 and
ord(g2) = 2k2− 1. If s = 3, then G = 〈g1〉 is cyclic, a contradiction. Hence s ≥ 4 and G = 〈g1, . . . , gs−1〉 =
〈g1, g3, . . . , gs−1〉 which implies that r(G) = s−2 and ord(g1) = exp(G) is even. Then ord(g1) ≥ 2 ord(g2) ≥
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6. Since D(G) > exp(G) + 1, by Lemma 3.2.2, we infer that vg1(U) + v−g1(V ) = 2k1 − 1 ≤ ord(g1) which
implies that 2k1 ≤ ord(g1). Since g2 = −2k1g1 6= 0, we obtain that 2k1 ≤ ord(g1)− 2. Thus

exp(G) + s− 3 ≤ D(G) = |U | = k1 + k2 + s− 2 ≤
ord(g1)

2
− 1 + x

ord(g1) + 2

4
y+ s− 2

≤
ord(g1)

2
− 1 +

ord(g1)

2
− 1 + s− 2 ≤ ord(g1) + s− 4

a contradiction.
Suppose that |Z| = D(G) − 1. Then there exists an element h |S such that Z = h−1S. Since Z−1UV

is an atom, we obtain that
(
h = −g1 − g2

)
or

(
h = g2 and k2 = 1

)
. If h = −g1 − g2, then Z−1UV =

(−g1−g2)g
k1

1 (−g2)
k2−1g3 · . . . ·gs is an atom of length D(G) and hence the similar argument of the previous

subcase |Z| = D(G) implies a contradiction. Suppose that h = g2 and k2 = 1. By A4, we obtain that
k1 = k2 = 1. Thus exp(G) + s− 3 ≤ D(G) = |U | = s which implies that exp(G) ≤ 3, a contradiction.

Suppose that |Z| = 3. Then UV Z−1 can only be a product of atoms of length 2. But vg1 (UV Z−1) =
k1 > v−g1(UV ) ≥ v−g1(UV Z−1), a contradiction. �

Proposition 3.8. Let G be a finite abelian group with D(G) ≥ 5. Then the following statements are

equivalent :

(a) G is either an elementary 2-group, or isomorphic to Cr−1
2 ⊕ C4 for some r ≥ 2, or isomorphic to

C2 ⊕ C2n for some n ≥ 2.

(b) There exist U, V ∈ A(G) with L(UV ) = {2,D(G)− 1} and |U | = |V | = D(G)− 1.

Proof. (a) ⇒ (b) Suppose that G is an elementary 2-group, and let (e1, . . . , er) be a basis of G with
ord(e1) = . . . = ord(er) = 2. Then D(G) = r + 1, U = e1 · . . . · er−1e0 ∈ A(G), where e0 = e1 + . . .+ er−1,
and L

(
U(−U)

)
= {2, r}.

Suppose that G is isomorphic to Cr−1
2 ⊕ C4 for some r ≥ 2, and let (e1, . . . , er) be a basis of G with

ord(e1) = . . . = ord(er−1) = 2 and ord(er) = 4. Then D(G) = r + 3, U = e1 · . . . · er−1e
2
r(e0 + er) ∈ A(G),

where e0 = e1 + . . .+ er, and L
(
U(−U)

)
= {2, r + 2}.

Suppose that G is isomorphic to C2⊕C2n for some n ≥ 2, and let (e1, e2) be a basis of G with ord(e1) = 2
and ord(e2) = 2n. Then D(G) = 2n+ 1, U = e2n2 ∈ A(G), and L

(
U(−U)

)
= {2, 2n}.

(b) ⇒ (a) Clearly, we have V = −U , and for every zero-sum sequence W with W |UV and W 6= UV ,
it follows that W is either an atom of length D(G) − 1 or W is a product of atoms of length 2. We set

U = gk1

1 · . . . · gkl

l with l, k1, . . . , kl ∈ N and g1, . . . , gl ∈ G pairwise distinct.
Suppose that l = 1. Then k1 = ord(g1) = D(G) − 1. Thus k1 is even and G ∼= C2 ⊕ Ck1

.

Suppose that l ≥ 2. For each i ∈ [1, l], the sequence Si = g−ki

i (−gi)
kiU is either zero-sum free or an

atom; clearly, Si is an atom if and only if 2kigi = 0. So we can distinguish two cases.

CASE 1: For each i ∈ [1, l] we have 2kigi = 0.
We claim that for any i ∈ [1, l], the tuple (g1, . . . , gi−1, gi+1, . . . , gl) is independent. Clearly, it is sufficient

to prove the claim for i = l. Assume to the contrary that (g1, . . . , gl−1) is not independent. Then there is

an atom W with W | gk1

1 · . . . · g
kl−1

l−1 · (−g1)
k1 · . . . · (−gl−1)

kl−1 and |W | > 2. Then W is an atom of length

D(G) − 1, and thus W−1UV is also an atom of length D(G) − 1. But gl(−gl) |W−1UV , a contradiction.
After renumbering if necessary we may suppose that

ord(gl) = min{ord(g1), . . . , ord(gl)} and ord(g1) = min{ord(g1), . . . , ord(gl−1)} .

Suppose that l = 2. By our assumption that ord(g1) ≥ ord(g2), we obtain that

exp(G)− 1 ≤ D(G)− 1 = k1 + k2 =
ord(g1)

2
+

ord(g2)

2
= ord(g1)−

ord(g1)− ord(g2)

2

≤ exp(G)−
ord(g1)− ord(g2)

2
≤ exp(G) .
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If D(G) = exp(G), then ord(g1) = exp(G), ord(g1) − ord(g2) = 2, and hence ord(g2) | 2 which implies
ord(g2) = 2 and ord(g1) = 4 = D(G) = exp(G), a contradiction to D(G) ≥ 5. If D(G) = exp(G) + 1, then
G ∼= C2 ⊕ C2n for some n ≥ 2.

Suppose that l ≥ 3. Then

D(G) − 1 = |U | = k1 + . . .+ kl =
ord(g1)

2
+ . . .+

ord(gl)

2
≤ ord(g1) +

ord(g2)

2
+ . . .+

ord(gl−1)

2
≤ ord(g1) + . . .+ ord(gl−1)− (l − 2) ≤ D(G) .

Suppose that equality holds at the second inequality sign. Then

ord(g1) +
ord(g2)

2
+ . . .+

ord(gl−1)

2
= ord(g1) + . . .+ ord(gl−1)− (l − 2) .

Since ord(gi)/2 ≤ ord(gi) − 1 for all i ∈ [2, l − 1], it follows that then ord(gi) = 2 for all i ∈ [2, l − 1].
Because our assumption on the order of the elements, we infer that ord(g1) = ord(gl) = 2, and hence G is
an elementary 2-group.

Suppose that inequality holds at the second inequality sign. Then we have

ord(g1) +
ord(g2)

2
+ . . .+

ord(gl−1)

2
= ord(g1) + . . .+ ord(gl−1)− (l − 2)− 1 .

Since ord(gi)/2 ≤ ord(gi) − 1 for all i ∈ [2, l − 1], there exists an i ∈ [2, l − 1], say i = 2, such that
ord(g2) = 4 and ord(gi) = 2 for all i ∈ [3, l− 1]. If l = 3, then G ∼= C4 ⊕ C4 or G ∼= C2 ⊕ C4, but the first

case is a contradiction to Lemma 3.3. If l ≥ 4, then G ∼= Cl−2
2 ⊕ C4.

CASE 2: There exists an i ∈ [1, l] such that the sequence Si is zero-sum free, say i = 1.
We start with a list of assertions.

A1. Let T, T ′ ∈ F(G) be distinct such that T |U , T ′ |U , and σ(T ) = σ(T ′). Then supp(T )∩ supp(T ′) =
∅, TT ′ = U , and 2σ(T ) = 0.

A2. Let T, T ′ ∈ F(G) be distinct such that T |S1, T
′ |S1, and σ(T ) = σ(T ′). Then supp(T )∩supp(T ′) =

∅, TT ′ = S1, and 2σ(T ) = −2k1g1.
A3. Σ(U) = G.
A4. If i ∈ [1, l] with ord(gi) > 2, then ord(gi) > 2ki.

Proof of A1. Obviously, T (−T ′) has sum zero and T (−T ′) |UV but T (−T ′) 6= UV . So T (−T ′) must
be an atom of length D(G)− 1 which implies that supp(T ) ∩ supp(T ′) = ∅, TT ′ = U , and 2σ(T ) = 0. �

Proof of A2. Obviously, T (−T ′) has sum zero, T (−T ′) |UV , and T (−T ′) 6= UV . So T (−T ′) must be
an atom of length D(G)−1 which implies that supp(T )∩supp(T ′) = ∅, TT ′ = S1, and 2σ(T ) = −2k1g1. �

Proof of A3. We will show that |Σ(U)| = |G|. Clearly, we have

|Σ(U)| = |{σ(T ) | 1 6= T ∈ F(G), T |U}|

= |{g ∈ G | there exist 1 6= T with T |U and σ(T ) = g}|

Since U = gk1

1 · . . . · gkl

l , we have

|{T ∈ F(G) | 1 6= T, T |U}| = (k1 + 1) · . . . · (kl + 1)− 1 .

By A1, there are at most two distinct subsequences of U with given sum g ∈ G. Therefore we obtain

|Σ(U)| = |{σ(T ) | 1 6= T ∈ F(G), T |U}|

= |{T ∈ F(G) | 1 6= T, T |U}|−

1

2
|{T ∈ F(G) | T |U and there is a divisor T ′ of U with T 6= T ′ and σ(T ) = σ(T ′)}|

= (k1 + 1) · . . . · (kl + 1)− 1− |{T ∈ F(G) | g1 ∤ T, T =
∏

g∈supp(T )

gvg(U), and ord(σ(T )) = 2}| .
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Next we study |Σ(S1)|. Since S1 is zero-sum free of length |S1| = D(G)−1, it follows that Σ(S1) = G\{0}.
Using A2 for the second equality sign we obtain that

|G| − 1 = |Σ(S1)| = (k1 + 1) · . . . · (kl + 1)− 1

− |{T ∈ F(G) | T = (−g1)
k1

∏

g∈supp(T )\{−g1}

gvg(U) and 2σ(T ) = −2k1g1}|

= (k1 + 1) · . . . · (kl + 1)− 1

−
(
|{T ∈ F(G) | g1 ∤ T and T =

∏

g∈supp(T )

gvg(U), ord(σ(T )) = 2}|+ |{T ∈ F(G) | T = 1}|
)

= |Σ(U)| − 1 ,

and hence Σ(U) = G. �

Proof of A4. Since S1 is zero-sum free, it follows that ord(g1) > 2k1. Now let i ∈ [2, l] be given and

assume to the contrary that ord(gi) ≤ 2ki. Recall that ord(gi) > vgi(U) = ki. We set U = gki

i U ′. Then

W ′ = (−gi)
ord(gi)−kiU ′ has sum zero and divides UV . Thus W ′ is an atom of length D(G)−1 = |W ′| = |U |

and hence ord(gi) = 2ki. Since Σ(S1) = G \ {0}, S1 has a subsequence T such that σ(T ) = (ki + 1)gi.

If gi ∤ T , then Tgki−1
i is a proper zero-sum subsequence of S1, a contradiction. If gi |T , then σ(g−1

i T ) =

kigi = σ(gki

i ). By A2, it follows that 0 = 2kigi = 2σ(g−1
i T ) = −2k1g1 6= 0, a contradiction. �

Now we distinguish two subcases.

CASE 2.1: |{i ∈ [1, l] | ord(gi) > 2}| ≥ 3, say ord(g1) > 2, ord(g2) > 2, and ord(g3) > 2.
We start with the following assertion.

A5. There is a subsequence W of U with σ(W ) = g1 − g2 such that W = gk2

2 W ′ and for any h |W ′,
ord(h) = 2.

Proof of A5. By A3, there exists some W ∈ F(G) such that W |U and σ(W ) = g1 − g2. We claim

that g1 ∤ W but gk2

2 |W . Assume to the contrary that g1 |W . Then σ(g−1
1 W ) = −g2 = σ(g−1

2 U). By

A1, this implies that 2g2 = 0, a contradiction. Assume to the contrary that gk2

2 ∤ W . Then g2W |U

and σ(g2W ) = g1 = σ(g1). By A1, this implies that 2g1 = 0, a contradiction. Thus W = gk2

2 W ′ with

W ′ | gk3

3 · . . . · gkl

l .
Let i ∈ [3, l] such that gi |W ′. We only need to show that ord(gi) = 2. Assume to the contrary

that ord(gi) > 2. We set X = Ugig
−1
2 , and then |X | = |U | = D(G) − 1. Suppose that X has a zero-

sum subsequence T . Then gki+1
i |T and by A4 we obtain that ord(gi) > 2ki. Therefore, g−ki

i T |U and

g−ki

i T 6= g−ki

i U but σ(g−ki

i T ) = −kigi = σ(g−ki

i U) which implies that 2kigi = 0 by A1, a contradiction.
Thus X is zero-sum free, and |X | = D(G) − 1 which imply that Σ(X) = G \ {0}. Therefore, X has a
subsequence T such that σ(T ) = g1 − g2.

Suppose that gki+1
i ∤ T . Then T |U , and by definition of X we have gk2

2 ∤ T which implies that g2T |U .
Since σ(g2T ) = g1 = σ(g1), we obtain that 2g1 = 0 by A1 , a contradiction.

Suppose that gki+1
i |T . Then g−1

i T |U . Since σ(g−1
i T ) = g1 − g2 − gi = σ(g−1

i W ) and g−1
i T 6= g−1

i W ,

we obtain that supp(g−1
i T ) ∩ supp(g−1

i W ) = ∅ and U = g−1
i T · g−1

i W by A1. Set T1 = g−1
i T , then

gk1

1 gki

i |T1 and g2 ∤ T1. It follows that σ(g−1
1 g2T1) = −gi = σ(g−1

i U) which implies that 2gi = 0 by A1, a
contradiction. �

Repeating the argument of A5, we can find another subsequence W1 of U with σ(W1) = g2 − g1 such

that W1 = gk1

1 W ′
1 and for any h |W ′

1, ord(h) = 2. Set Y = WW1(
∏

h∈supp(W ′)∩supp(W ′

1
)

h2)−1, then Y is a

zero-sum subsequence of U . Since ord(g3) > 2, we have g3 ∤ W and g3 ∤ W1 which imply that g3 ∤ Y . It
follows that Y is a proper zero-sum subsequence of U , a contradiction.

CASE 2.2: |{i ∈ [1, l] | ord(gi) > 2}| ≤ 2.
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Since k1g1 + . . .+ klgl = σ(U) = 0 and ord(k1g1) > 2, it follows that |{i ∈ [1, l] | ord(gi) > 2}| = 2, say,
ord(g1) > 2 and ord(g2) > 2. Then A4 implies that ord(g1) > 2k1 and ord(g2) > 2k2.

Suppose that l = 2. Then

D(G)− 1 = k1 + k2 ≤
ord(g1)− 1

2
+

ord(g2)− 1

2
≤ exp(G)− 1

which implies that G is a cyclic group and k1 = k2. Since any minimal zero-sum sequence of length |G|− 1
over a cyclic group has the form g|G|−2(2g) for some generating element g ∈ G, it follows that 1 = k2 = k1,
and hence |G| = 3, a contradiction to D(G) ≥ 5.

Suppose l ≥ 3. Then exp(G) is even. We may assume that ord(g1) ≥ ord(g2). Since (g3, . . . , gl) is
independent, we have r(G) ≥ l− 2. Therefore,

exp(G) + l − 4 ≤ D(G)− 1 = |U | = k1 + k2 + l − 2

≤ x
ord(g1)− 1

2
y+ x

ord(g2)− 1

2
y+ l − 2 ≤ 2x

ord(g1)− 1

2
y+ l − 2

≤ ord(g1) + l − 3 ≤ exp(G) + l − 3 .

Since ord(g1) | exp(G), we have that ord(g1) = exp(G) is even. Thus 2x ord(g1)−1
2 y = ord(g1) − 2 which

implies that k1+k2 = x
ord(g1)−1

2 y+x
ord(g2)−1

2 y = 2x ord(g1)−1
2 y. Then ord(g1) = ord(g2) = 2k1+2 = 2k2+2.

Since σ(U) = k1g1 + k2g2 + g3 + . . .+ gl = 0, we have 2k1g1 +2k2g2 = 0 which implies that 2g1 +2g2 = 0.
If k1 = k2 ≥ 2, then g21g

2
2 is an atom and divides UV , a contradiction. Thus k1 = k2 = 1, and hence

ord(g1) = ord(g2) = 4. By A3, there exists a subsequence W of U such that σ(W ) = 2g1. If g1 |W , then
g1 ∤ g−1

1 W and σ(g−1
1 W ) = g1 = σ(g1) which implies that 2g1 = 0 by A1, a contradiction. If g1 ∤ W , then

g1 ∤ U(g1W )−1 and σ(U(g1W )−1) = g1 = σ(g1) which implies that 2g1 = 0 by A1, a contradiction. �

4. Proof of the Main Results

In this final section we provide the proofs of all results presented in the Introduction (Theorem 1.1,
Corollary 1.2, and Corollary 1.3).

Proof of Theorem 1.1 and of Corollary 1.2. Let H be a Krull monoid with finite class group G such that
|G| ≥ 3 and each class contains a prime divisor. Recall that the monoid of zero-sum sequences B(G) is a
Krull monoid with class group isomorphic to G and each class contains a prime divisor. By Proposition
2.1, k(H) = k(G) and c(H) = c(G). Thus it is sufficient to prove Theorem 1.1 for the Krull monoid B(G).

Let O be a holomorphy ring in a global field K, and R a classical maximal O-order in a central simple
algebra A overK such that every stably free left R-ideal is free. Then the monoid R• is a non-commutative
Krull monoid ([15]), and all invariants under consideration of R• coincide with the respective invariants
of a commutative Krull monoid whose class group is isomorphic to a ray class group of O. These (highly
non-trivial) transfer results are established in [31, 4], and are summarized in [4, Theorems 7.6 and 7.12].
Therefore, both for Theorem 1.1 and for Corollary 1.2, it is sufficient to prove the equivalence of the
statements for a monoid of zero-sum sequences.

Let G be a finite abelian group with |G| ≥ 3, and recall the inequalities

k(G) ≤ c(G) ≤ D(G) .

(c) ⇒ (a) Suppose that G is isomorphic either to Cr−1
2 ⊕ C4 for some r ≥ 2 or to C2 ⊕ C2n for some

n ≥ 2. Then Theorem A (in the Introduction) shows that c(G) ≤ D(G)− 1. Since D(Cr−1
2 ⊕ C4) = r + 3

and D(C2 ⊕ C2n) = 2n+ 1, Lemma 3.1.2 implies that c(G) ≥ k(G) ≥ D(G) − 1.
(a) ⇒ (b) Suppose that c(G) = D(G) − 1. By Theorem A, G is neither cyclic nor an elementary

2-group which implies that D(G) ≥ 5. By Lemma 3.1.1, we have

D(G)− 1 = c(G) ≤ max
{⌊1

2
D(G) + 1

⌋
, k(G)

}
≤ D(G) .
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Thus, if k(G) < D(G)− 1, then
⌊
1
2D(G) + 1

⌋
≥ D(G)− 1 which implies that D(G) ≤ 4, a contradiction.

(b) ⇒ (c) Suppose that k(G) = D(G)−1. Again by TheoremA, G is neither cyclic nor an elementary 2-
group which implies that D(G) ≥ 5. Then there exist U, V ∈ A(G) such that min

(
L(UV )\{2}

)
= D(G)−1.

Obviously, there are the following four cases (up to symmetry):

• L(UV ) = {2,D(G)− 1,D(G)}.
• L(UV ) = {2,D(G)− 1} and |U | = |V | = D(G).
• L(UV ) = {2,D(G)− 1} and |U | − 1 = |V | = D(G).
• L(UV ) = {2,D(G)− 1} and |U | = |V | = D(G)− 1.

These cases are handled in the Propositions 3.5 to 3.8, and they imply that G is isomorphic either to
Cr−1

2 ⊕ C4 for some r ≥ 2 or to C2 ⊕ C2n for some n ≥ 2. �

Proof of Corollary 1.3. Let G and G′ be abelian groups such that L(G) = L(G′). Then

k(G) = sup{min(L \ {2}) | 2 ∈ L ∈ L(G)} = k(G′) .

If G is finite, then k(G) ≤ c(G) ≤ D(G) < ∞. If G is infinite, then, by the Theorem of Kainrath (see [22]
or [18, Section 7.3]), every finite set L ⊂ N≥2 lies in L(G), which implies that k(G) = ∞.

For k ∈ N, we define the refined elasticities

ρk(G) = sup{supL | k ∈ L ∈ L(G)} ,

and observe that ρk(G) = ρk(G
′). This implies that kD(G) = ρ2k(G) = ρ2k(G

′) = kD(G′) (see [18, Section
6.3]) for each k ∈ N, and hence D(G) = D(G′).

Now suppose that G′ ∈ {Cr−1
2 ⊕ C4, C2 ⊕ C2n} where r, n ≥ 2. Then Theorem 1.1 implies that

k(G′) = D(G′)− 1. Since L(G) = L(G′), it follows that G is finite and that

k(G) = k(G′) = D(G′)− 1 = D(G)− 1 ,

whence Theorem 1.1 implies that G ∈ {Cr−1
2 ⊕ C4, C2 ⊕ C2n} with n, r ≥ 2. Suppose now that n, r ≥ 3.

Clearly, Condition (b) in Proposition 3.5 is equivalent to

(b’) {2,D(G)− 1,D(G)} ∈ L(G).

Thus Proposition 3.5 implies in particular that L(C2 ⊕ C2n) 6= L(Cr−1
2 ⊕ C4), and thus the assertion of

Corollary 1.3 follows. �

References

[1] D. Bachman, N. Baeth, and J. Gossell, Factorizations of upper triangular matrices, Linear Algebra Appl. 450 (2014),
138 – 157.

[2] N.R. Baeth and A. Geroldinger, Monoids of modules and arithmetic of direct-sum decompositions, Pacific J. Math., to
appear.

[3] N.R. Baeth, V. Ponomarenko, D. Adams, R.Ardila, D. Hannasch, A. Kosh, H. McCarthy, and R. Rosenbaum, Number

theory of matrix semigroups, Linear Algebra Appl. 434 (2011), 694 – 711.
[4] N.R. Baeth and D. Smertnig, Factorization theory in noncommutative settings, http://arxiv.org/abs/1402.4397.
[5] N.R. Baeth and R. Wiegand, Factorization theory and decomposition of modules, Am. Math. Mon. 120 (2013), 3 – 34.
[6] P. Baginski, A. Geroldinger, D.J. Grynkiewicz, and A. Philipp, Products of two atoms in Krull monoids and arithmetical

characterizations of class groups, Eur. J. Comb. 34 (2013), 1244 – 1268.
[7] Gyu Whan Chang and D. Smertnig, Factorization in the self-idealization of a PID, Boll. Unione Mat. Ital. IX,6(2)

(2013), 363 – 377.
[8] S.T. Chapman, P.A. Garćıa-Sánchez, and D. Llena, The catenary and tame degree of numerical monoids, Forum Math.

21 (2009), 117 – 129.
[9] S.T. Chapman, P.A. Garćıa-Sánchez, D. Llena, V. Ponomarenko, and J.C. Rosales, The catenary and tame degree in

finitely generated commutative cancellative monoids, Manuscr. Math. 120 (2006), 253 – 264.
[10] S.T. Chapman, F. Gotti, and R. Pelayo, On delta sets and their realizable subsets in Krull monoids with cyclic class

groups, Colloq. Math., to appear, –.
[11] A. Facchini, Krull monoids and their application in module theory, Algebras, Rings and their Representations (A. Fac-

chini, K. Fuller, C. M. Ringel, and C. Santa-Clara, eds.), World Scientific, 2006, pp. 53 – 71.

http://arxiv.org/abs/1402.4397


THE CATENARY DEGREE OF KRULL MONOIDS II 23

[12] W. Gao, A. Geroldinger, and D.J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith. 141 (2010), 103 – 152.
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